School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Sci Rep. 2023 May 9;13(1):7558. doi: 10.1038/s41598-023-34013-1.
Congenital heart disease (CHD) is one of the leading causes of mortality among birth defects, and due to significant variations in the whole heart and great vessel, automatic CHD segmentation using CT images has been always under-researched. Even though some segmentation algorithms have been developed in the literature, none perform very well under the complex structure of CHD. To deal with the challenges, we take advantage of deep learning in processing regular structures and graph algorithms in dealing with large variations and propose a framework combining both the whole heart and great vessel segmentation in complex CHD. We benefit from deep learning in segmenting the four chambers and myocardium based on the blood pool, and then we extract the connection information and apply graph matching to determine the categories of all the vessels. Experimental results on 68 3D CT images covering 14 types of CHD illustrate our framework can increase the Dice score by 12% on average compared with the state-of-the-art whole heart and great vessel segmentation method in normal anatomy. We further introduce two cardiovascular imaging specialists to evaluate our results in the standard of the Van Praagh classification system, and achieves well performance in clinical evaluation. All these results may pave the way for the clinical use of our method in the incoming future.
先天性心脏病(CHD)是导致出生缺陷死亡的主要原因之一,由于整个心脏和大血管的显著差异,使用 CT 图像进行自动 CHD 分割一直研究不足。尽管文献中已经开发了一些分割算法,但在 CHD 的复杂结构下,没有一个算法表现得非常好。为了应对这些挑战,我们利用深度学习处理规则结构和图算法处理大的变化,并提出了一个结合复杂 CHD 中整个心脏和大血管分割的框架。我们受益于深度学习,基于血池分割四腔和心肌,然后提取连接信息并应用图匹配来确定所有血管的类别。涵盖 14 种 CHD 类型的 68 个 3D CT 图像的实验结果表明,与正常解剖结构的最先进的整个心脏和大血管分割方法相比,我们的框架可以将 Dice 评分平均提高 12%。我们进一步引入了两位心血管成像专家,按照 Van Praagh 分类系统的标准来评估我们的结果,在临床评估中表现良好。所有这些结果都可能为我们的方法在未来的临床应用铺平道路。