Suppr超能文献

基于生物特征图形匹配的视网膜验证系统。

Retina verification system based on biometric graph matching.

机构信息

School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology, Melbourne 3000, Australia.

出版信息

IEEE Trans Image Process. 2013 Sep;22(9):3625-35. doi: 10.1109/TIP.2013.2266257. Epub 2013 Jun 4.

Abstract

This paper presents an automatic retina verification framework based on the biometric graph matching (BGM) algorithm. The retinal vasculature is extracted using a family of matched filters in the frequency domain and morphological operators. Then, retinal templates are defined as formal spatial graphs derived from the retinal vasculature. The BGM algorithm, a noisy graph matching algorithm, robust to translation, non-linear distortion, and small rotations, is used to compare retinal templates. The BGM algorithm uses graph topology to define three distance measures between a pair of graphs, two of which are new. A support vector machine (SVM) classifier is used to distinguish between genuine and imposter comparisons. Using single as well as multiple graph measures, the classifier achieves complete separation on a training set of images from the VARIA database (60% of the data), equaling the state-of-the-art for retina verification. Because the available data set is small, kernel density estimation (KDE) of the genuine and imposter score distributions of the training set are used to measure performance of the BGM algorithm. In the one dimensional case, the KDE model is validated with the testing set. A 0 EER on testing shows that the KDE model is a good fit for the empirical distribution. For the multiple graph measures, a novel combination of the SVM boundary and the KDE model is used to obtain a fair comparison with the KDE model for the single measure. A clear benefit in using multiple graph measures over a single measure to distinguish genuine and imposter comparisons is demonstrated by a drop in theoretical error of between 60% and more than two orders of magnitude.

摘要

本文提出了一种基于生物特征图匹配(BGM)算法的自动视网膜验证框架。视网膜血管使用频域中的滤波器族和形态运算符进行提取。然后,视网膜模板被定义为从视网膜血管衍生的正式空间图。BGM 算法是一种对平移、非线性变形和小角度旋转具有鲁棒性的噪声图匹配算法,用于比较视网膜模板。BGM 算法使用图拓扑来定义一对图之间的三种距离度量,其中两种是新的。支持向量机(SVM)分类器用于区分真实和伪造的比较。使用单一和多个图度量,分类器在 VARIA 数据库的训练集图像(数据的 60%)上实现了完全分离,与视网膜验证的最新水平相当。由于可用数据集较小,因此使用核密度估计(KDE)对训练集的真实和伪造分数分布进行了评估,以衡量 BGM 算法的性能。在一维情况下,使用测试集验证了 KDE 模型。在测试中,EER 为 0 表明 KDE 模型非常适合经验分布。对于多个图度量,使用 SVM 边界和 KDE 模型的新组合来与单度量的 KDE 模型进行公平比较。使用多个图度量来区分真实和伪造的比较,其理论误差明显降低了 60%以上,超过两个数量级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验