Shanghai Center for Clinical Laboratory, Shanghai, China.
Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cancer Med. 2023 Jul;12(13):14636-14645. doi: 10.1002/cam4.6067. Epub 2023 May 10.
Conventional blood and stool tests are normally used for early screening of colorectal cancer (CRC) but the accuracy and efficiency remain to be improved. Recent findings suggest Fusobacterium nucleatum to be a biomarker for CRC. This study evaluated the role of F. nucleatum and developed CRC diagnostic models by combining F. nucleatum with fecal occult blood (FOB), transferrin (TRF), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), gender, and age.
Candidates including 71 healthy individuals and 59 CRC patients were recruited. Abundance of F. nucleatum in stool or tissue samples was measured by quantitative real-time PCR. CEA, CA19-9, TRF, and FOB were measured in parallel. These biomarkers together with genders and ages were the seven parameters used to develop CRC diagnostic models. Ten different machine learning algorithms were tested to achieve the best performance.
Fecal F. nucleatum abundance was found significantly higher in CRC group compared to healthy group (p = 0.0005). Among the CRC patients, F. nucleatum abundance in tumor tissue was significantly higher than that in paracancerous tissue (p = 0.0087). CRC diagnostic models using different parameters were generated based on Logistic Regression algorithm, which showed good performance. The area under the curve (AUC) score of fecal F. nucleatum as the single diagnostic biomarker was 0.68 while the accuracy was 0.56. The diagnostic performance was obviously improved with the highest AUC (0.93) and accuracy (0.87) achieved when using all the 7 clinical parameters. The combination F. nucleatum + FOB + gender + age had the second highest AUC (0.92) and accuracy (0.85). A more utilitarian model using F. nucleatum + FOB showed relatively high AUC at 0.86 and accuracy at 0.81.
F. nucleatum is valuable for CRC diagnosis. Combination of different clinical parameters could significantly improve CRC diagnostic performance. The combination F. nucleatum + FOB + gender + age may be an effective and noninvasive method for clinical application.
传统的血液和粪便检查通常用于结直肠癌(CRC)的早期筛查,但准确性和效率仍有待提高。最近的研究结果表明,具核梭杆菌是 CRC 的生物标志物。本研究通过结合粪便潜血(FOB)、转铁蛋白(TRF)、癌胚抗原(CEA)、糖链抗原 19-9(CA19-9)、性别和年龄等参数,评估了具核梭杆菌的作用并建立了 CRC 诊断模型。
招募了 71 名健康个体和 59 名 CRC 患者作为研究对象。通过实时荧光定量 PCR 检测粪便或组织样本中具核梭杆菌的丰度。同时平行检测 CEA、CA19-9、TRF 和 FOB。这些标志物以及性别和年龄是用于开发 CRC 诊断模型的七个参数。为了获得最佳性能,测试了十种不同的机器学习算法。
CRC 组粪便中具核梭杆菌丰度明显高于健康组(p=0.0005)。在 CRC 患者中,肿瘤组织中的具核梭杆菌丰度明显高于癌旁组织(p=0.0087)。基于 Logistic 回归算法生成了使用不同参数的 CRC 诊断模型,该模型表现出良好的性能。粪便中具核梭杆菌作为单一诊断生物标志物的曲线下面积(AUC)评分为 0.68,准确性为 0.56。当使用所有 7 个临床参数时,诊断性能明显提高,AUC 最高(0.93),准确性最高(0.87)。当使用具核梭杆菌+FOB+性别+年龄时,AUC 为 0.92,准确性为 0.85,获得了第二高的 AUC 和准确性。使用具核梭杆菌+FOB 的更实用模型 AUC 为 0.86,准确性为 0.81。
具核梭杆菌对 CRC 诊断具有重要价值。结合不同的临床参数可显著提高 CRC 诊断性能。具核梭杆菌+FOB+性别+年龄的组合可能是一种有效且无创的临床应用方法。