Suppr超能文献

Dozer:用于群体规模单细胞RNA测序数据的去偏个性化基因共表达网络

Dozer: Debiased personalized gene co-expression networks for population-scale scRNA-seq data.

作者信息

Lu Shan, Keleş Sündüz

机构信息

Department of Statistics, University of Wisconsin, Madison, WI, USA.

Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

出版信息

bioRxiv. 2023 Apr 29:2023.04.25.538290. doi: 10.1101/2023.04.25.538290.

Abstract

Population-scale single cell RNA-seq (scRNA-seq) datasets create unique opportunities for quantifying expression variation across individuals at the gene co-expression network level. Estimation of co-expression networks is well-established for bulk RNA-seq; however, single-cell measurements pose novel challenges due to technical limitations and noise levels of this technology. Gene-gene correlation estimates from scRNA-seq tend to be severely biased towards zero for genes with low and sparse expression. Here, we present Dozer to debias gene-gene correlation estimates from scRNA-seq datasets and accurately quantify network level variation across individuals. Dozer corrects correlation estimates in the general Poisson measurement model and provides a metric to quantify genes measured with high noise. Computational experiments establish that Dozer estimates are robust to mean expression levels of the genes and the sequencing depths of the datasets. Compared to alternatives, Dozer results in fewer false positive edges in the co-expression networks, yields more accurate estimates of network centrality measures and modules, and improves the faithfulness of networks estimated from separate batches of the datasets. We showcase unique analyses enabled by Dozer in two population-scale scRNA-seq applications. Co-expression network-based centrality analysis of multiple differentiating human induced pluripotent stem cell (iPSC) lines yields biologically coherent gene groups that are associated with iPSC differentiation efficiency. Application with population-scale scRNA-seq of oligodendrocytes from postmortem human tissues of Alzheimer disease and controls uniquely reveals co-expression modules of innate immune response with markedly different co-expression levels between the diagnoses. Dozer represents an important advance in estimating personalized co-expression networks from scRNA-seq data.

摘要

群体规模的单细胞RNA测序(scRNA-seq)数据集为在基因共表达网络水平上量化个体间的表达变异创造了独特机会。共表达网络的估计在批量RNA测序中已得到充分确立;然而,由于该技术的技术限制和噪声水平,单细胞测量带来了新的挑战。对于低表达和稀疏表达的基因,scRNA-seq的基因-基因相关性估计往往严重偏向于零。在这里,我们提出了Dozer,以消除scRNA-seq数据集中基因-基因相关性估计的偏差,并准确量化个体间的网络水平变异。Dozer在一般泊松测量模型中校正相关性估计,并提供一种量化高噪声测量基因的指标。计算实验表明,Dozer估计对基因的平均表达水平和数据集的测序深度具有鲁棒性。与其他方法相比,Dozer在共表达网络中产生的假阳性边更少,能更准确地估计网络中心性度量和模块,并提高了从数据集的不同批次估计的网络的忠实度。我们展示了Dozer在两个人群体规模的scRNA-seq应用中实现的独特分析。基于共表达网络的多个分化的人类诱导多能干细胞(iPSC)系的中心性分析产生了与iPSC分化效率相关的生物学上连贯的基因组。将其应用于阿尔茨海默病和对照的死后人体组织中的少突胶质细胞的群体规模scRNA-seq,独特地揭示了先天免疫反应的共表达模块,其在诊断之间具有明显不同的共表达水平。Dozer代表了从scRNA-seq数据估计个性化共表达网络方面的一项重要进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10c/10168282/b31790b6c0c7/nihpp-2023.04.25.538290v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验