Suppr超能文献

利用 TESLA 技术从空间转录组学中对肿瘤生态系统进行超高分辨率解析。

Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA.

机构信息

Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell Syst. 2023 May 17;14(5):404-417.e4. doi: 10.1016/j.cels.2023.03.008. Epub 2023 May 9.

Abstract

Cell populations in the tumor microenvironment (TME), including their abundance, composition, and spatial location, are critical determinants of patient response to therapy. Recent advances in spatial transcriptomics (ST) have enabled the comprehensive characterization of gene expression in the TME. However, popular ST platforms, such as Visium, only measure expression in low-resolution spots and have large tissue areas that are not covered by any spots, which limits their usefulness in studying the detailed structure of TME. Here, we present TESLA, a machine learning framework for tissue annotation with pixel-level resolution in ST. TESLA integrates histological information with gene expression to annotate heterogeneous immune and tumor cells directly on the histology image. TESLA further detects unique TME features such as tertiary lymphoid structures, which represents a promising avenue for understanding the spatial architecture of the TME. Although we mainly illustrated the applications in cancer, TESLA can also be applied to other diseases.

摘要

肿瘤微环境(TME)中的细胞群体,包括其丰度、组成和空间位置,是患者对治疗反应的关键决定因素。最近的空间转录组学(ST)进展使 TME 中的基因表达得到了全面描述。然而,流行的 ST 平台,如 Visium,仅在低分辨率的点上测量表达,并且有很大的组织区域没有被任何点覆盖,这限制了它们在研究 TME 的详细结构方面的有用性。在这里,我们提出了 TESLA,这是一个具有像素级分辨率的 ST 组织注释的机器学习框架。TESLA 将组织学信息与基因表达相结合,直接在组织学图像上注释异质免疫和肿瘤细胞。TESLA 进一步检测到独特的 TME 特征,如三级淋巴结构,这为理解 TME 的空间结构提供了一个很有前途的途径。尽管我们主要说明了在癌症中的应用,但 TESLA 也可以应用于其他疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d0e/10246692/45a9c8370d9b/nihms-1901443-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验