文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

议题:从空间分辨转录组数据中探索肿瘤空间结构的统计学习框架。

SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data.

机构信息

Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.

Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.

出版信息

Sci Adv. 2024 Sep 27;10(39):eadp4942. doi: 10.1126/sciadv.adp4942.


DOI:10.1126/sciadv.adp4942
PMID:39331720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11430467/
Abstract

Tumor tissues exhibit a complex spatial architecture within the tumor microenvironment (TME). Spatially resolved transcriptomics (SRT) is promising for unveiling the spatial structures of the TME at both cellular and molecular levels, but identifying pathology-relevant spatial domains remains challenging. Here, we introduce SpaTopic, a statistical learning framework that harmonizes spot clustering and cell-type deconvolution by integrating single-cell transcriptomics and SRT data. Through topic modeling, SpaTopic stratifies the TME into spatial domains with coherent cellular organization, facilitating refined annotation of the spatial architecture with improved performance. We assess SpaTopic across various tumor types and show accurate prediction of tertiary lymphoid structures and tumor boundaries. Moreover, marker genes derived from SpaTopic are transferrable and can be applied to mark spatial domains in other datasets. In addition, SpaTopic enables quantitative comparison and functional characterization of spatial domains across SRT datasets. Overall, SpaTopic presents an innovative analytical framework for exploring, comparing, and interpreting tumor SRT data.

摘要

肿瘤组织在肿瘤微环境(TME)中呈现出复杂的空间结构。空间分辨转录组学(SRT)有望在细胞和分子水平上揭示 TME 的空间结构,但识别与病理学相关的空间域仍然具有挑战性。在这里,我们介绍了 SpaTopic,这是一种统计学习框架,通过整合单细胞转录组学和 SRT 数据,协调斑点聚类和细胞类型去卷积。通过主题建模,SpaTopic 将 TME 分层为具有一致细胞组织的空间域,从而可以更精细地注释空间结构,并提高性能。我们在各种肿瘤类型中评估了 SpaTopic,并显示出对三级淋巴结构和肿瘤边界的准确预测。此外,来自 SpaTopic 的标记基因是可转移的,可以应用于标记其他数据集的空间域。此外,SpaTopic 可以实现 SRT 数据集之间空间域的定量比较和功能特征描述。总的来说,SpaTopic 为探索、比较和解释肿瘤 SRT 数据提供了一种创新的分析框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/deaa156219a9/sciadv.adp4942-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/e40cc1cf480b/sciadv.adp4942-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/6c38b1dc71eb/sciadv.adp4942-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/9250927b1a3d/sciadv.adp4942-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/42d9acd8899c/sciadv.adp4942-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/7ece2107d709/sciadv.adp4942-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/5c4e4c1a33a0/sciadv.adp4942-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/deaa156219a9/sciadv.adp4942-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/e40cc1cf480b/sciadv.adp4942-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/6c38b1dc71eb/sciadv.adp4942-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/9250927b1a3d/sciadv.adp4942-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/42d9acd8899c/sciadv.adp4942-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/7ece2107d709/sciadv.adp4942-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/5c4e4c1a33a0/sciadv.adp4942-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1005/11430467/deaa156219a9/sciadv.adp4942-f7.jpg

相似文献

[1]
SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data.

Sci Adv. 2024-9-27

[2]
METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics.

Nat Commun. 2024-8-25

[3]
Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning.

Nat Commun. 2024-6-13

[4]
SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.

J Comput Biol. 2024-9

[5]
Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA.

Cell Syst. 2023-5-17

[6]
EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.

Bioinformatics. 2023-1-1

[7]
Precise detection of cell-type-specific domains in spatial transcriptomics.

Cell Rep Methods. 2024-8-19

[8]
STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.

Genome Biol. 2024-8-5

[9]
SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning.

Commun Biol. 2023-4-7

[10]
Accurate and efficient integrative reference-informed spatial domain detection for spatial transcriptomics.

Nat Methods. 2024-7

引用本文的文献

[1]
Deciphering spatially confined immune evasion niches in osteosarcoma with 3-D spatial transcriptomics: a literature review.

Front Oncol. 2025-7-16

[2]
Construction of Gene Regulatory Networks Based on Spatial Multi-Omics Data and Application in Tumor-Boundary Analysis.

Genes (Basel). 2025-7-13

[3]
Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments.

NPJ Precis Oncol. 2025-3-11

[4]
Single-cell genomics and spatial transcriptomics in islet transplantation for diabetes treatment: advancing towards personalized therapies.

Front Immunol. 2025-2-20

本文引用的文献

[1]
MYL9 expressed in cancer-associated fibroblasts regulate the immune microenvironment of colorectal cancer and promotes tumor progression in an autocrine manner.

J Exp Clin Cancer Res. 2023-11-6

[2]
Tertiary lymphoid structures and B cells: An intratumoral immunity cycle.

Immunity. 2023-10-10

[3]
Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response.

Nat Commun. 2023-8-18

[4]
An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression.

Cell Res. 2023-8

[5]
Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer.

Sci Adv. 2023-6-16

[6]
Tertiary lymphoid structures predict the prognosis and immunotherapy response of cholangiocarcinoma.

Front Immunol. 2023

[7]
Dictionary learning for integrative, multimodal and scalable single-cell analysis.

Nat Biotechnol. 2024-2

[8]
CCL19 dendritic cells potentiate clinical benefit of anti-PD-(L)1 immunotherapy in triple-negative breast cancer.

Med. 2023-6-9

[9]
Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace.

Nat Commun. 2023-4-29

[10]
The roles of tertiary lymphoid structures in chronic diseases.

Nat Rev Nephrol. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索