Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA.
Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
Sci Rep. 2023 May 10;13(1):7579. doi: 10.1038/s41598-023-34439-7.
Tumor recurrence affects up to 70% of early-stage hepatocellular carcinoma (HCC) patients, depending on treatment option. Deep learning algorithms allow in-depth exploration of imaging data to discover imaging features that may be predictive of recurrence. This study explored the use of convolutional neural networks (CNN) to predict HCC recurrence in patients with early-stage HCC from pre-treatment magnetic resonance (MR) images. This retrospective study included 120 patients with early-stage HCC. Pre-treatment MR images were fed into a machine learning pipeline (VGG16 and XGBoost) to predict recurrence within six different time frames (range 1-6 years). Model performance was evaluated with the area under the receiver operating characteristic curves (AUC-ROC). After prediction, the model's clinical relevance was evaluated using Kaplan-Meier analysis with recurrence-free survival (RFS) as the endpoint. Of 120 patients, 44 had disease recurrence after therapy. Six different models performed with AUC values between 0.71 to 0.85. In Kaplan-Meier analysis, five of six models obtained statistical significance when predicting RFS (log-rank p < 0.05). Our proof-of-concept study indicates that deep learning algorithms can be utilized to predict early-stage HCC recurrence. Successful identification of high-risk recurrence candidates may help optimize follow-up imaging and improve long-term outcomes post-treatment.
肿瘤复发影响多达 70%的早期肝细胞癌 (HCC) 患者,具体取决于治疗方案。深度学习算法可以深入挖掘影像数据,发现可能具有预测复发作用的影像特征。本研究探讨了使用卷积神经网络 (CNN) 从早期 HCC 患者的术前磁共振 (MR) 图像预测 HCC 复发的情况。这项回顾性研究纳入了 120 名早期 HCC 患者。术前 MR 图像输入机器学习管道 (VGG16 和 XGBoost) 以预测六个不同时间框架内的复发情况 (范围 1-6 年)。使用接收者操作特征曲线下的面积 (AUC-ROC) 评估模型性能。预测后,使用以无复发生存 (RFS) 为终点的 Kaplan-Meier 分析评估模型的临床相关性。在 120 名患者中,44 名患者在治疗后发生疾病复发。六个模型的 AUC 值在 0.71 到 0.85 之间。在 Kaplan-Meier 分析中,当预测 RFS 时,六个模型中的五个具有统计学意义 (对数秩 p<0.05)。我们的概念验证研究表明,深度学习算法可用于预测早期 HCC 复发。成功识别高复发风险的患者,可能有助于优化治疗后的随访影像学检查并改善长期预后。