Lee Kyung Hwa, Lee Jungwook, Choi Gwang Hyeon, Yun Jihye, Kang Jiseon, Choi Jonggi, Kim Kang Mo, Kim Namkug
Department of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
J Imaging Inform Med. 2025 Apr;38(2):1212-1223. doi: 10.1007/s10278-024-01227-2. Epub 2024 Aug 15.
The objective of this study was to develop and evaluate a model for predicting post-treatment survival in hepatocellular carcinoma (HCC) patients using their CT images and clinical information, including various treatment information. We collected pre-treatment contrast-enhanced CT images and clinical information including patient-related factors, initial treatment options, and survival status from 692 patients. The patient cohort was divided into a training cohort (n = 507), a testing cohort (n = 146), and an external CT cohort (n = 39), which included patients who underwent CT scans at other institutions. After model training using fivefold cross-validation, model validation was performed on both the testing cohort and the external CT cohort. Our cascaded model employed a 3D convolutional neural network (CNN) to extract features from CT images and derive final survival probabilities. These probabilities were obtained by concatenating previously predicted probabilities for each interval with the patient-related factors and treatment options. We utilized two consecutive fully connected layers for this process, resulting in a number of final outputs corresponding to the number of time intervals, with values representing conditional survival probabilities for each interval. Performance was assessed using the concordance index (C-index), the mean cumulative/dynamic area under the receiver operating characteristics curve (mC/D AUC), and the mean Brier score (mBS), calculated every 3 months. Through an ablation study, we found that using DenseNet-121 as the backbone network and setting the prediction interval to 6 months optimized the model's performance. The integration of multimodal data resulted in superior predictive capabilities compared to models using only CT images or clinical information (C index 0.824 [95% CI 0.822-0.826], mC/D AUC 0.893 [95% CI 0.891-0.895], and mBS 0.121 [95% CI 0.120-0.123] for internal test cohort; C index 0.750 [95% CI 0.747-0.753], mC/D AUC 0.819 [95% CI 0.816-0.823], and mBS 0.159 [95% CI 0.158-0.161] for external CT cohort, respectively). Our CNN-based discrete-time survival prediction model with CT images and clinical information demonstrated promising results in predicting post-treatment survival of patients with HCC.
本研究的目的是开发并评估一种模型,该模型利用肝细胞癌(HCC)患者的CT图像和临床信息(包括各种治疗信息)来预测治疗后的生存率。我们收集了692例患者的治疗前增强CT图像以及临床信息,包括患者相关因素、初始治疗方案和生存状态。患者队列被分为训练队列(n = 507)、测试队列(n = 146)和外部CT队列(n = 39),外部CT队列包括在其他机构接受CT扫描的患者。在使用五折交叉验证进行模型训练后,对测试队列和外部CT队列进行了模型验证。我们的级联模型采用三维卷积神经网络(CNN)从CT图像中提取特征并得出最终生存概率。这些概率是通过将每个时间间隔之前预测的概率与患者相关因素和治疗方案相结合而获得的。我们在此过程中使用了两个连续的全连接层,从而产生与时间间隔数量相对应的多个最终输出,其值代表每个时间间隔的条件生存概率。每隔3个月使用一致性指数(C指数)、受试者操作特征曲线下的平均累积/动态面积(mC/D AUC)以及平均布里尔评分(mBS)来评估性能。通过一项消融研究,我们发现使用DenseNet - 121作为骨干网络并将预测间隔设置为6个月可优化模型性能。与仅使用CT图像或临床信息的模型相比,多模态数据的整合产生了更强的预测能力(内部测试队列的C指数为0.824 [95% CI 0.822 - 0.826],mC/D AUC为0.893 [95% CI 0.891 - 0.895],mBS为0.121 [95% CI 0.120 - 0.123];外部CT队列的C指数分别为0.750 [95% CI 0.747 - 0.753],mC/D AUC为0.819 [95% CI 0.816 - 0.823],mBS为0.159 [95% CI 0.158 - 0.161])。我们基于CNN的结合CT图像和临床信息的离散时间生存预测模型在预测HCC患者治疗后的生存率方面显示出了有前景的结果。