Cell and Molecular Biology Graduate Group (K.A.B.G., B.M.W.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA.
Genomics and Computational Biology Graduate Group (W.P.B., M.F.D.), University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA.
Circ Genom Precis Med. 2023 Jun;16(3):248-257. doi: 10.1161/CIRCGEN.120.003249. Epub 2023 May 11.
Genome-wide association studies have identified hundreds of loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contribute to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest.
We analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell lines (n=166), as well as in an independent collection of primary liver tissues (n=96) to perform discovery of splicing quantitative trait loci (sQTLs).
We observe that transcript splicing is highly cell type specific, and the genes that are differentially spliced between iPSCs and hepatocyte-like cells are enriched for metabolism pathway annotations. We identify 1384 hepatocyte-like cell sQTLs and 1455 iPSC sQTLs at a false discovery rate of <5% and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an hepatocyte-like cell expression quantitative trait locus or sQTL. Only 2 loci colocalize with both a sQTL and expression quantitative trait locus, indicating that sQTLs contribute information about genome-wide association studies loci that cannot be obtained by analysis of steady-state gene expression alone.
These results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.
全基因组关联研究已经确定了数百个与脂质水平相关的基因座。然而,这些基因座中的大多数遗传机制尚不清楚。最近的研究表明,剪接转录本丰度的变化导致了复杂性状的变异。因此,确定与疾病相关细胞类型中的基因剪接相关的遗传基因座,并确定这些基因座对脂质生物学的信息程度具有广泛的兴趣。
我们分析了 83 个样本匹配的诱导多能干细胞 (iPSC) 和肝样细胞系 (n=166) 以及独立的原发性肝组织 (n=96) 中的基因剪接,以进行剪接数量性状基因座 (sQTL) 的发现。
我们观察到转录物的剪接高度细胞类型特异性,并且在 iPSC 和肝样细胞之间差异剪接的基因富集了代谢途径注释。我们在错误发现率<5%的情况下鉴定了 1384 个肝样细胞 sQTL 和 1455 个 iPSC sQTL,并发现 sQTL 通常在细胞类型之间共享。为了评估 sQTL 对脂质水平变异的贡献,我们使用脂质全基因组关联数据进行 colocalization 分析。我们鉴定了 19 个与肝样细胞表达数量性状基因座或 sQTL 共定位的脂质相关基因座。只有 2 个基因座与 sQTL 和表达数量性状基因座共定位,这表明 sQTL 提供了全基因组关联研究基因座的信息,这些信息不能仅通过分析稳态基因表达获得。
这些结果为未来使用 iPSC 和 iPSC 衍生细胞来评估影响心血管疾病风险和一般复杂性状的遗传机制的努力提供了重要基础。