National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China.
Plant Cell. 2018 Jul;30(7):1404-1423. doi: 10.1105/tpc.18.00109. Epub 2018 Jul 2.
Alternative splicing (AS) enhances transcriptome diversity and plays important roles in regulating plant processes. Although widespread natural variation in AS has been observed in plants, how AS is regulated and contribute to phenotypic variation is poorly understood. Here, we report a population-level transcriptome assembly and genome-wide association study to identify splicing quantitative trait loci (sQTLs) in developing maize () kernels from 368 inbred lines. We detected 19,554 unique sQTLs for 6570 genes. Most sQTLs showed small isoform usage changes without involving major isoform switching between genotypes. The sQTL-affected isoforms tend to display distinct protein functions. We demonstrate that nonsense-mediated mRNA decay, microRNA-mediated regulation, and small interfering peptide-mediated peptide interference are frequently involved in sQTL regulation. The natural variation in AS and overall mRNA level appears to be independently regulated with different -sequences preferentially used. We identified 214 putative -acting splicing regulators, among which , encoding an hnRNP-like glycine-rich RNA binding protein, regulates the largest -cluster. Knockout of by CRISPR/Cas9 altered splicing of numerous downstream genes. We found that 739 sQTLs colocalized with previous marker-trait associations, most of which occurred without changes in overall mRNA level. Our findings uncover the importance of AS in diversifying gene function and regulating phenotypic variation.
可变剪接(AS)增强了转录组的多样性,并在调控植物过程中发挥着重要作用。尽管在植物中观察到了广泛的 AS 自然变异,但 AS 如何被调控以及如何导致表型变异仍知之甚少。在这里,我们报告了一项群体水平的转录组组装和全基因组关联研究,以鉴定来自 368 个自交系发育中的玉米()籽粒中的剪接数量性状位点(sQTL)。我们检测到 6570 个基因的 19554 个独特 sQTL。大多数 sQTL 显示出小的异构体使用变化,而不涉及基因型之间的主要异构体转换。受 sQTL 影响的异构体往往表现出不同的蛋白质功能。我们证明,无意义介导的 mRNA 降解、microRNA 介导的调节和小干扰肽介导的肽干扰经常参与 sQTL 调节。AS 和整体 mRNA 水平的自然变异似乎是独立调控的,不同的 -序列优先使用。我们鉴定了 214 个潜在的 -作用剪接调节剂,其中编码一种 hnRNP 样甘氨酸丰富 RNA 结合蛋白的 ,调节最大的 -簇。通过 CRISPR/Cas9 敲除 改变了许多下游基因的剪接。我们发现 739 个 sQTL 与先前的标记-性状关联共定位,其中大多数发生时整体 mRNA 水平没有变化。我们的研究结果揭示了 AS 在多样化基因功能和调节表型变异方面的重要性。