Suppr超能文献

毛细驱动微流控技术:3D 制造对生物分析器件的影响。

Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices.

机构信息

Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona, Spain.

Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona, Spain.

出版信息

Analyst. 2023 Jun 12;148(12):2657-2675. doi: 10.1039/d3an00115f.

Abstract

Over decades, decentralized diagnostics continues to move towards rapid and cost-effective testing at the point-of-care (POC). Although microfluidics has become a key enabling technology for POC testing, the need for robust peripheral equipment has been a key limiting factor in reaching an ideal device. Manufacturing technologies are now reaching a level of maturity that allows the definition of 3D features down to the sub-millimeter scale. Employing three-dimensional (3D) features and surface chemistry allows the possibility to pre-program sophisticated control of the capillary flow avoiding bulky peripheral equipment. By designing a sequence of steps, like elution of reagents, washing, mixing, and sensing, capillary valves have become a powerful tool for POC applications. These valves use capillary force to stop and then release flows within pre-programmed capillary circuits without any moving part. Without their 3D structure, the feasibility of creating pre-programmed bioanalytical devices would be nearly impossible. Besides, the advent of smart materials and their variety of surface properties permitted the unprecedented ability to fabricate reliable flow control with a range of capillary driving forces. The classification of such capillary elements is presented in two functional steps - stop and actuation. This review includes the advances in 3D microfabrication, design, and surface chemistry for manufacturing bioanalytical devices. These developments are critically reviewed, focusing on the process and considering phenomena such as timing, reproducibility, unwanted diffusion, and cross-contaminations.

摘要

几十年来,去中心化诊断技术不断朝着在即时护理点(POC)实现快速、经济高效的检测方向发展。尽管微流控技术已成为即时护理测试的关键使能技术,但对稳健的外围设备的需求一直是实现理想设备的关键限制因素。制造技术现在已经达到了一个成熟的水平,允许在亚毫米尺度下定义 3D 特征。采用三维(3D)特征和表面化学,有可能预先编程控制毛细管流动,避免使用庞大的外围设备。通过设计一系列步骤,如洗脱试剂、清洗、混合和传感,毛细管阀已成为即时护理应用的强大工具。这些阀利用毛细管力在预编程的毛细管回路中停止和释放流动,而无需任何运动部件。没有 3D 结构,创建预编程生物分析设备的可行性几乎是不可能的。此外,智能材料的出现及其各种表面特性使得能够以前所未有的能力制造可靠的流动控制,使用各种毛细管驱动力。这种毛细管元件的分类在两个功能步骤中呈现——停止和致动。本综述包括用于制造生物分析设备的 3D 微加工、设计和表面化学的进展。这些发展受到了批判性的审查,重点是工艺,并考虑了诸如定时、可重复性、不希望的扩散和交叉污染等现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验