Suppr超能文献

用于毛细管微流控预编程免疫测定的无扩散阀。

Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics.

作者信息

Azizian Pooya, Casals-Terré Jasmina, Ricart Jordi, Cabot Joan M

机构信息

Energy and Engineering Department, Leitat Technological Center, Terrassa, Barcelona Spain.

Mechanical Engineering Department, Technical University of Catalonia, Terrassa, Barcelona Spain.

出版信息

Microsyst Nanoeng. 2023 Jul 17;9:91. doi: 10.1038/s41378-023-00568-2. eCollection 2023.

Abstract

By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the π-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the π-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction-expansion valve) demonstrates that the π-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D-printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the π-valve relative to the conventional value. Overall, the π-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.

摘要

通过操控微流控通道的几何形状和表面化学性质,毛细管驱动的微流控技术可以在无需外部仪器的情况下自发地移动和停止流体。此外,通过同步毛细管压力并对微流控芯片的表面张力进行编码,可以对复杂的微流控电路进行预编程。这些系统的一个关键部件是毛细管阀。然而,这些阀的主要问题是在阀加载和激活步骤中存在不必要的扩散,这可能会导致交叉污染。在本研究中,我们设计并验证了一种新型的无扩散毛细管阀:π阀。该阀由三维结构和一个空隙区域组成。空隙充当两种流体之间的间隔物,以避免直接接触。当阀被触发时,空隙内捕获的空气被下游毛细管流引起的气动抽吸排出,而不会在回路中引入气泡。所提出的设计消除了阀激活前的扩散混合。使用数值模拟来研究π阀的功能并优化其尺寸,使用3D打印来制造模具或微流控芯片。与传统阀(基于收缩-扩张阀)的比较表明,π阀消除了可能回流到阀中的情况,并减少了加载和触发步骤中的混合和扩散。作为概念验证,该阀成功应用于用于测定苯二氮卓类药物的毛细管驱动回路中,在无需外部仪器的情况下,在3D打印的微流控芯片中实现了3种溶液的连续释放。结果表明,使用π阀时的荧光强度比传统阀提高了40%。总体而言,π阀可防止交叉污染,最大限度地减少样品使用,并有助于实现复杂的流体预编程释放,为进行适用于即时检测的自动化免疫分析提供了一种有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/182f/10352302/165f5024a1a2/41378_2023_568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验