Medical Faculty, Neurology Department, Uskudar University, Istanbul, Turkey.
Department of Neuroscience, Uskudar University, Istanbul, Turkey.
J Neural Transm (Vienna). 2023 Jul;130(7):967-974. doi: 10.1007/s00702-023-02649-y. Epub 2023 May 11.
Diagnosis of patients with bipolar disorder may be challenging and delayed in clinical practice. Neuropsychological impairments and brain abnormalities are commonly reported in bipolar disorder (BD); therefore, they can serve as potential biomarkers of the disorder. Rather than relying on these predictors separately, using both structural and neuropsychiatric indicators together could be more informative and increase the accuracy of the automatic disorder classification. Yet, to our information, no Artificial Intelligence (AI) study has used multimodal data using both neuropsychiatric tests and structural brain changes to classify BD. In this study, we first investigated differences in gray matter volumes between patients with bipolar I disorder (n = 37) and healthy controls (n = 27). The results of the verbal and non-verbal memory tests were then compared between the two groups. Finally, we used the artificial neural network (ANN) method to model all the aforementioned values for group classification. Our voxel-based morphometry results demonstrated differences in the left anterior parietal lobule and bilateral insula gray matter volumes, suggesting a reduction of these brain structures in BD. We also observed a decrease in both verbal and non-verbal memory scores of individuals with BD (p < 0.001). The ANN model of neuropsychiatric test scores combined with gray matter volumes has classified the bipolar group with 89.5% accuracy. Our results demonstrate that when bilateral insula volumes are used together with neuropsychological test results the patients with bipolar I disorder and controls could be differentiated with very high accuracy. The findings imply that multimodal data should be used in AI studies as it better represents the multi-componential nature of the condition, thus increasing its diagnosability.
在临床实践中,双相情感障碍患者的诊断可能具有挑战性且容易延误。神经心理学损伤和大脑异常在双相情感障碍(BD)中较为常见;因此,它们可以作为该疾病的潜在生物标志物。与其分别依赖这些预测指标,不如一起使用结构和神经心理指标,这样可能更具信息性并提高自动疾病分类的准确性。然而,据我们所知,尚无使用神经心理测试和结构脑变化的多模态数据对 BD 进行分类的人工智能(AI)研究。在这项研究中,我们首先研究了 37 名双相 I 型障碍患者(n=37)和 27 名健康对照者(n=27)之间的灰质体积差异。然后比较了两组之间的言语和非言语记忆测试结果。最后,我们使用人工神经网络(ANN)方法对所有上述值进行建模以进行组分类。我们的基于体素的形态计量学结果表明,左前顶叶和双侧脑岛灰质体积存在差异,表明 BD 中这些脑结构减少。我们还观察到 BD 患者的言语和非言语记忆评分均降低(p<0.001)。将神经心理测试评分与灰质体积相结合的 ANN 模型已将双相组分类为 89.5%的准确率。我们的结果表明,当双侧脑岛体积与神经心理学测试结果一起使用时,可非常准确地区分 I 型双相情感障碍患者和对照组。这些发现表明,在 AI 研究中应使用多模态数据,因为它能更好地代表该疾病的多组分性质,从而提高其可诊断性。