Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India.
J Biomed Inform. 2018 Oct;86:15-24. doi: 10.1016/j.jbi.2018.08.005. Epub 2018 Aug 21.
The simultaneous administration of multiple drugs increases the probability of interaction among them, as one drug may affect the activities of others. This interaction among drugs may have a positive or negative impact on the therapeutic outcomes. Thus, identification of unknown drug-drug interactions (DDIs) is of significant concern for improving the safety and efficacy of drug consumption. Although multiple DDI resources exist, it is becoming infeasible to maintain these up-to-date manually with the number of biomedical texts growing at a fast pace. Most existing methods model DDI extraction as a classification problem and rely mainly on handcrafted features, and certain features further depend on domain-specific tools. Recently, neural network models using latent features have been demonstrated to yield similar or superior performance compared to existing models. In this study, we present three long short-term memory (LSTM) network models, namely B-LSTM, AB-LSTM, and Joint AB-LSTM. All three models use word and position embedding as latent features; thus, they do not rely on explicit feature engineering. Furthermore, the use of a bidirectional LSTM (Bi-LSTM) network allows for extraction of implicit features from an entire sentence. The two models AB-LSTM and Joint AB-LSTM also apply attentive pooling in the Bi-LSTM layer output in order to assign weights to features. Our experimental results on the SemEval-2013 DDI extraction dataset indicate that the Joint AB-LSTM model produces reasonable performance (F-score: 69.39%) even with the simple architecture.
同时使用多种药物会增加它们之间相互作用的可能性,因为一种药物可能会影响其他药物的活性。这些药物之间的相互作用可能会对治疗结果产生积极或消极的影响。因此,识别未知的药物-药物相互作用(DDI)对于提高药物使用的安全性和疗效至关重要。尽管存在多种 DDI 资源,但随着生物医学文本数量的快速增长,手动维护这些资源已变得不可行。大多数现有的方法将 DDI 提取建模为分类问题,并主要依赖于手工制作的特征,某些特征还进一步依赖于特定于领域的工具。最近,使用潜在特征的神经网络模型已被证明可以与现有模型相比具有相似或更优的性能。在这项研究中,我们提出了三个长短期记忆(LSTM)网络模型,即 B-LSTM、AB-LSTM 和联合 AB-LSTM。这三个模型都使用词和位置嵌入作为潜在特征;因此,它们不依赖于显式特征工程。此外,使用双向 LSTM(Bi-LSTM)网络可以从整个句子中提取隐含特征。AB-LSTM 和联合 AB-LSTM 模型还在 Bi-LSTM 层输出中应用了注意池化,以便为特征分配权重。我们在 SemEval-2013 DDI 提取数据集上的实验结果表明,联合 AB-LSTM 模型即使采用简单的架构也能产生合理的性能(F 分数:69.39%)。