Zhang Shanwen, Yu Changqing, Zhang Chuanlei
School of Electronic Information, Xijing University, Xi'an, 710123, China.
School of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China.
BMC Bioinformatics. 2025 Jun 10;26(1):157. doi: 10.1186/s12859-025-06165-6.
Predicting potential drug-drug interactions (DDIs) from biomedical data plays a critical role in drug therapy, drug development, drug regulation, and public health. However, it remains challenging due to the large number of possible drug combinations, and multimodal biomedical data, which is disorder, imbalanced, more prone to linguistic errors, and difficult to label. A Semantic Cross-Attention Transformer (SCAT) model is constructed to address the above challenge. In the model, BioBERT, Doc2Vec and graph convolutional network are utilized to embed the multimodal biomedical data into vector representation, BiGRU is adopted to capture contextual dependencies in both forward and backward directions, Cross-Attention is employed to integrate the extracted features and explicitly model dependencies between them, and a feature-joint classifier is adopted to implement DDI predication (DDIP). The experiment results on the DDIExtraction-2013 dataset demonstrate that SCAT outperforms the state-of-the-art DDIP approaches. SCAT expands the application of multimodal deep learning in the field of multimodal DDIP, and can be applied to drug regulation systems to predict novel DDIs and DDI-related events.
从生物医学数据中预测潜在的药物相互作用(DDIs)在药物治疗、药物开发、药物监管和公共卫生中起着关键作用。然而,由于大量可能的药物组合以及多模态生物医学数据存在无序、不平衡、更容易出现语言错误且难以标注等问题,这仍然具有挑战性。构建了一种语义交叉注意力Transformer(SCAT)模型来应对上述挑战。在该模型中,利用BioBERT、Doc2Vec和图卷积网络将多模态生物医学数据嵌入到向量表示中,采用双向门控循环单元(BiGRU)来捕捉前后向的上下文依赖关系,运用交叉注意力来整合提取的特征并明确建模它们之间的依赖关系,并且采用特征联合分类器来实现药物相互作用预测(DDIP)。在DDIExtraction - 2013数据集上的实验结果表明,SCAT优于当前最先进的DDIP方法。SCAT扩展了多模态深度学习在多模态DDIP领域的应用,并且可以应用于药物监管系统以预测新的DDIs和与DDI相关的事件。