Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.
Phys Chem Chem Phys. 2022 Jul 27;24(29):17397-17416. doi: 10.1039/d2cp01838a.
Paramagnetic NMR data contain extremely accurate long-range information on metalloprotein structures and, when used in the frame of integrative structural biology approaches, they allow for the retrieval of structural details to a resolution that is not achievable using other techniques. Paramagnetic data thus represent an extremely powerful tool to refine protein models in solution, especially when coupled to X-ray or cryoelectron microscopy data, to monitor the formation of complexes and determine the relative arrangements of their components, and to highlight the presence of conformational heterogeneity. More recently, theoretical and computational advancements in quantum chemical calculations of paramagnetic NMR observables are progressively opening new routes in structural biology, because they allow for the determination of the structure within the coordination sphere of the metal center, thus acting as a loupe on sites that are difficult to observe but very important for protein function.
顺磁 NMR 数据包含有关金属蛋白结构的极其精确的长程信息,并且当它们在综合结构生物学方法的框架内使用时,它们允许检索结构细节,其分辨率是使用其他技术无法达到的。因此,顺磁数据是一种非常强大的工具,可用于在溶液中精修蛋白质模型,特别是当与 X 射线或冷冻电子显微镜数据结合使用时,可用于监测复合物的形成并确定其组成部分的相对排列,并突出构象异质性的存在。最近,顺磁 NMR 可观测性的量子化学计算在理论和计算方面的进展,正在为结构生物学开辟新的途径,因为它们允许确定金属中心配位球内的结构,从而成为观察困难但对蛋白质功能非常重要的位点的显微镜。