Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia.
Int J Mol Sci. 2023 Apr 27;24(9):7953. doi: 10.3390/ijms24097953.
Several kinds of anticancer drugs are presently commercially accessible, but low efficacy, solubility, and toxicity have reduced the overall therapeutic indices. Thus, the search for promising anticancer drugs continues. The interactions of numerous essential anticancer drugs with DNA are crucial to their biological functions. Here, the anticancer effects of N-ethyl toluene-4-sulphonamide () and 2,5-Dichlorothiophene-3-sulphonamide () on cell lines from breast and cervical cancer were investigated. The study also compared how these substances interacted with the hearing sperm DNA. The most promising anticancer drug was identified as 2,5-Dichlorothiophene-3-sulfonamide (), which showed GI of 7.2 ± 1.12 µM, 4.62 ± 0.13 µM and 7.13 ± 0.13 µM against HeLa, MDA-MB231 and MCF-7 cells, respectively. Moreover, it also exhibited significant electrostatic and non-electrostatic contributions to the binding free energy. The work utilized computational techniques, such as molecular docking and molecular dynamic (MD) simulations, to demonstrate the strong cytotoxicity of 2,5-Dichlorothiophene-3-sulfamide () in comparison to standard Doxorubicin and cisplatin, respectively. Molecular docking experiments provided additional support for a role for the minor groove in the binding of the 2,5-Dichlorothiophene-3-sulfamide ()-DNA complex. The molecular docking studies and MD simulation showed that both compounds revealed comparable inhibitory potential against standard Doxorubicin and cisplatin. This study has the potential to lead to the discovery of new bioactive compounds for use in cancer treatment, including metallic and non-metallic derivatives of 2,5-Dichlorothiophene-3-sulfonamide (). It also emphasizes the worth of computational approaches in the development of new drugs and lays the groundwork for future research.
目前有几种抗癌药物可商购,但低疗效、溶解度和毒性降低了整体治疗指数。因此,对有前途的抗癌药物的研究仍在继续。许多抗癌药物与 DNA 的相互作用对其生物功能至关重要。在这里,研究了 N-乙基甲苯-4-磺酰胺()和 2,5-二氯噻吩-3-磺酰胺()对乳腺癌和宫颈癌细胞系的抗癌作用。该研究还比较了这些物质如何与听力精子 DNA 相互作用。最有前途的抗癌药物被确定为 2,5-二氯噻吩-3-磺酰胺(),它对 HeLa、MDA-MB231 和 MCF-7 细胞的 GI 分别为 7.2 ± 1.12 µM、4.62 ± 0.13 µM 和 7.13 ± 0.13 µM。此外,它还对结合自由能表现出显著的静电和非静电贡献。这项工作利用计算技术,如分子对接和分子动力学(MD)模拟,证明了 2,5-二氯噻吩-3-磺酰胺()的强细胞毒性,与标准阿霉素和顺铂相比分别。分子对接实验为 2,5-二氯噻吩-3-磺酰胺()-DNA 复合物结合中小沟的作用提供了额外的支持。分子对接研究和 MD 模拟表明,这两种化合物对标准阿霉素和顺铂均显示出相当的抑制潜力。这项研究有可能发现用于癌症治疗的新的生物活性化合物,包括 2,5-二氯噻吩-3-磺酰胺()的金属和非金属衍生物。它还强调了计算方法在新药开发中的价值,并为未来的研究奠定了基础。