Suppr超能文献

基于改进型 Yolov7 网络和运动场景混合匹配的石化设备跟踪。

Petrochemical Equipment Tracking by Improved Yolov7 Network and Hybrid Matching in Moving Scenes.

机构信息

College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China.

CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China.

出版信息

Sensors (Basel). 2023 May 7;23(9):4546. doi: 10.3390/s23094546.

Abstract

Petrochemical equipment tracking is a fundamental and important technology in petrochemical industry security monitoring, equipment working risk analysis, and other applications. In complex scenes where the multiple pipelines present different directions and many kinds of equipment have huge scale and shape variation in seriously mutual occlusions captured by moving cameras, the accuracy and speed of petrochemical equipment tracking would be limited because of the false and missed tracking of equipment with extreme sizes and severe occlusion, due to image quality, equipment scale, light, and other factors. In this paper, a new multiple petrochemical equipment tracking method is proposed by combining an improved Yolov7 network with attention mechanism and small target perceive layer and a hybrid matching that incorporates deep feature and traditional texture and location feature. The model incorporates the advantages of channel and spatial attention module into the improved Yolov7 detector and Siamese neural network for similarity matching. The proposed model is validated on the self-built petrochemical equipment video data set and the experimental results show it achieves a competitive performance in comparison with the related state-of-the-art tracking algorithms.

摘要

石化设备跟踪是石化行业安全监控、设备工作风险分析等应用中的一项基础且重要的技术。在复杂场景中,由于移动摄像机拍摄到的多个管道具有不同的方向,并且大量的设备具有巨大的尺寸和形状变化,严重相互遮挡,因此由于图像质量、设备尺寸、光线等因素,石化设备跟踪的准确性和速度会受到限制,容易出现设备的误跟踪和漏跟踪,这些设备尺寸极端,遮挡严重。本文提出了一种新的多石化设备跟踪方法,该方法结合了改进的 Yolov7 网络和注意力机制以及小目标感知层,并采用了融合深度特征和传统纹理及位置特征的混合匹配方法。该模型将通道和空间注意力模块的优点结合到改进的 Yolov7 探测器和 Siamese 神经网络中进行相似性匹配。在所建立的石化设备视频数据集上对所提出的模型进行了验证,实验结果表明,与相关的最先进跟踪算法相比,该模型具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba9/10181657/44fae89d9140/sensors-23-04546-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验