The College of Computer Science Chengdu University of Information Technology, Chengdu, 610000, China.
The College of Computer Science Chengdu University of Information Technology, Chengdu, 610000, China.
Comput Biol Med. 2023 Jun;160:106985. doi: 10.1016/j.compbiomed.2023.106985. Epub 2023 May 5.
Accurate segmentation of medical images is an important step during radiotherapy planning and clinical diagnosis. However, manually marking organ or lesion boundaries is tedious, time-consuming, and prone to error due to subjective variability of radiologist. Automatic segmentation remains a challenging task owing to the variation (in shape and size) across subjects. Moreover, existing convolutional neural networks based methods perform poorly in small medical objects segmentation due to class imbalance and boundary ambiguity. In this paper, we propose a dual feature fusion attention network (DFF-Net) to improve the segmentation accuracy of small objects. It mainly includes two core modules: the dual-branch feature fusion module (DFFM) and the reverse attention context module (RACM). We first extract multi-resolution features by multi-scale feature extractor, then construct DFFM to aggregate the global and local contextual information to achieve information complementarity among features, which provides sufficient guidance for accurate small objects segmentation. Moreover, to alleviate the degradation of segmentation accuracy caused by blurred medical image boundaries, we propose RACM to enhance the edge texture of features. Experimental results on datasets NPC, ACDC, and Polyp demonstrate that our proposed method has fewer parameters, faster inference, and lower model complexity, and achieves better accuracy than more state-of-the-art methods.
医学图像的精确分割是放射治疗计划和临床诊断过程中的重要步骤。然而,由于放射科医生的主观可变性,手动标记器官或病变边界既繁琐又耗时,并且容易出错。由于个体之间的差异(形状和大小),自动分割仍然是一项具有挑战性的任务。此外,由于类不平衡和边界模糊,现有的基于卷积神经网络的方法在小医学对象分割方面表现不佳。在本文中,我们提出了一种双特征融合注意网络(DFF-Net)来提高小目标的分割精度。它主要包括两个核心模块:双分支特征融合模块(DFFM)和反向注意上下文模块(RACM)。我们首先通过多尺度特征提取器提取多分辨率特征,然后构建 DFFM 来聚合全局和局部上下文信息,以实现特征之间的信息互补,从而为准确的小目标分割提供充分的指导。此外,为了减轻因医学图像边界模糊而导致的分割精度下降,我们提出了 RACM 来增强特征的边缘纹理。在 NPC、ACDC 和 Polyp 数据集上的实验结果表明,与最先进的方法相比,我们提出的方法具有更少的参数、更快的推理速度和更低的模型复杂度,并且具有更好的准确性。