Suppr超能文献

WDFF-Net:基于目标感知注意力机制的带权双分支特征融合网络的息肉分割。

WDFF-Net: Weighted Dual-Branch Feature Fusion Network for Polyp Segmentation With Object-Aware Attention Mechanism.

出版信息

IEEE J Biomed Health Inform. 2024 Jul;28(7):4118-4131. doi: 10.1109/JBHI.2024.3381891. Epub 2024 Jul 2.

Abstract

Colon polyps in colonoscopy images exhibit significant differences in color, size, shape, appearance, and location, posing significant challenges to accurate polyp segmentation. In this paper, a Weighted Dual-branch Feature Fusion Network is proposed for Polyp Segmentation, named WDFF-Net, which adopts HarDNet68 as the backbone network. First, a dual-branch feature fusion network architecture is constructed, which includes a shared feature extractor and two feature fusion branches, i.e. Progressive Feature Fusion (PFF) branch and Scale-aware Feature Fusion (SFF) branch. The branches fuse the deep features of multiple layers for different purposes and with different fusion ways. The PFF branch is to address the under-segmentation or over-segmentation problems of flat polyps with low-edge contrast by iteratively fusing the features from low, medium, and high layers. The SFF branch is to tackle the the problem of drastic variations in polyp size and shape, especially the missed segmentation problem for small polyps. These two branches are complementary and play different roles, in improving segmentation accuracy. Second, an Object-aware Attention Mechanism (OAM) is proposed to enhance the features of the target regions and suppress those of the background regions, to interfere with the segmentation performance. Third, a weighted dual-branch the segmentation loss function is specifically designed, which dynamically assigns the weight factors of the loss functions for two branches to optimize their collaborative training. Experimental results on five public colon polyp datasets demonstrate that, the proposed WDFF-Net can achieve a superior segmentation performance with lower model complexity and faster inference speed, while maintaining good generalization ability.

摘要

结肠镜图像中的结肠息肉在颜色、大小、形状、外观和位置上存在显著差异,这给准确的息肉分割带来了很大的挑战。本文提出了一种用于息肉分割的加权双分支特征融合网络(Weighted Dual-branch Feature Fusion Network),简称 WDFF-Net,该网络采用 HarDNet68 作为骨干网络。首先,构建了一个双分支特征融合网络架构,包括一个共享特征提取器和两个特征融合分支,即渐进式特征融合(Progressive Feature Fusion,PFF)分支和尺度感知特征融合(Scale-aware Feature Fusion,SFF)分支。这两个分支以不同的融合方式和目的融合多个层次的深层特征。PFF 分支旨在通过迭代融合低、中、高层的特征来解决边缘对比度低的扁平息肉的欠分割或过分割问题。SFF 分支旨在解决息肉大小和形状的剧烈变化问题,特别是对于小息肉的分割缺失问题。这两个分支相辅相成,提高了分割精度。其次,提出了一种目标感知注意力机制(Object-aware Attention Mechanism,OAM),以增强目标区域的特征并抑制背景区域的特征,从而干扰分割性能。第三,专门设计了加权双分支分割损失函数,动态分配两个分支损失函数的权重因子,以优化它们的协同训练。在五个公共结肠息肉数据集上的实验结果表明,所提出的 WDFF-Net 可以在保持良好泛化能力的同时,实现更好的分割性能,同时具有较低的模型复杂度和更快的推理速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验