文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用超短回波时间磁共振成像的基于深度学习的脊柱软骨终板健康生物标志物

Deep-learning-based biomarker of spinal cartilage endplate health using ultra-short echo time magnetic resonance imaging.

作者信息

Bonnheim Noah B, Wang Linshanshan, Lazar Ann A, Chachad Ravi, Zhou Jiamin, Guo Xiaojie, O'Neill Conor, Castellanos Joel, Du Jiang, Jang Hyungseok, Krug Roland, Fields Aaron J

机构信息

Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.

出版信息

Quant Imaging Med Surg. 2023 May 1;13(5):2807-2821. doi: 10.21037/qims-22-729. Epub 2023 Mar 10.


DOI:10.21037/qims-22-729
PMID:37179932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10167428/
Abstract

BACKGROUND: T2* relaxation times in the spinal cartilage endplate (CEP) measured using ultra-short echo time magnetic resonance imaging (UTE MRI) reflect aspects of biochemical composition that influence the CEP's permeability to nutrients. Deficits in CEP composition measured using T2* biomarkers from UTE MRI are associated with more severe intervertebral disc degeneration in patients with chronic low back pain (cLBP). The goal of this study was to develop an objective, accurate, and efficient deep-learning-based method for calculating biomarkers of CEP health using UTE images. METHODS: Multi-echo UTE MRI of the lumbar spine was acquired from a prospectively enrolled cross-sectional and consecutive cohort of 83 subjects spanning a wide range of ages and cLBP-related conditions. CEPs from the L4-S1 levels were manually segmented on 6,972 UTE images and used to train neural networks utilizing the u-net architecture. CEP segmentations and mean CEP T2* values derived from manually- and model-generated segmentations were compared using Dice scores, sensitivity, specificity, Bland-Altman, and receiver-operator characteristic (ROC) analysis. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated and related to model performance. RESULTS: Compared with manual CEP segmentations, model-generated segmentations achieved sensitives of 0.80-0.91, specificities of 0.99, Dice scores of 0.77-0.85, area under the receiver-operating characteristic curve values of 0.99, and precision-recall (PR) AUC values of 0.56-0.77, depending on spinal level and sagittal image position. Mean CEP T2* values and principal CEP angles derived from the model-predicted segmentations had low bias in an unseen test dataset (T2* bias =0.33±2.37 ms, angle bias =0.36±2.65°). To simulate a hypothetical clinical scenario, the predicted segmentations were used to stratify CEPs into high, medium, and low T2* groups. Group predictions had diagnostic sensitivities of 0.77-0.86 and specificities of 0.86-0.95. Model performance was positively associated with image SNR and CNR. CONCLUSIONS: The trained deep learning models enable accurate, automated CEP segmentations and T2* biomarker computations that are statistically similar to those from manual segmentations. These models address limitations with inefficiency and subjectivity associated with manual methods. Such techniques could be used to elucidate the role of CEP composition in disc degeneration etiology and guide emerging therapies for cLBP.

摘要

背景:使用超短回波时间磁共振成像(UTE MRI)测量的脊柱软骨终板(CEP)的T2弛豫时间反映了影响CEP对营养物质通透性的生化组成方面。使用UTE MRI的T2生物标志物测量的CEP组成缺陷与慢性下腰痛(cLBP)患者更严重的椎间盘退变相关。本研究的目的是开发一种基于深度学习的客观、准确且高效的方法,用于使用UTE图像计算CEP健康的生物标志物。 方法:对83名年龄范围广泛且患有与cLBP相关疾病的前瞻性入组横断面连续队列进行腰椎多回波UTE MRI检查。在6972张UTE图像上手动分割L4 - S1水平的CEP,并用于训练采用u-net架构的神经网络。使用Dice分数、灵敏度、特异性、Bland - Altman分析和接受者操作特征(ROC)分析比较CEP分割以及手动生成和模型生成分割得出的平均CEP T2值。计算信噪比(SNR)和对比噪声比(CNR)并将其与模型性能相关联。 结果:与手动CEP分割相比,模型生成的分割在不同脊柱节段和矢状位图像位置的灵敏度为0.80 - 0.91,特异性为0.99,Dice分数为0.77 - 0.85,接受者操作特征曲线下面积值为0.99,精确召回率(PR)AUC值为0.56 - 0.77。在一个未见过的测试数据集中,模型预测分割得出的平均CEP T2值和主要CEP角度偏差较低(T2偏差 = 0.33±2.37 ms,角度偏差 = 0.36±2.65°)。为了模拟一个假设的临床场景,将预测分割用于将CEP分层为高、中、低T2组。组预测的诊断灵敏度为0.77 - 0.86,特异性为0.86 - 0.95。模型性能与图像SNR和CNR呈正相关。 结论:经过训练的深度学习模型能够实现准确、自动化的CEP分割和T2*生物标志物计算,在统计学上与手动分割相似。这些模型解决了与手动方法相关的效率低下和主观性的局限性。此类技术可用于阐明CEP组成在椎间盘退变病因中的作用,并指导cLBP的新兴治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/3927e41f057a/qims-13-05-2807-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/8f965444fc93/qims-13-05-2807-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/7c5ce7dcfba7/qims-13-05-2807-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/2a038fde1d92/qims-13-05-2807-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/1ac422dc4678/qims-13-05-2807-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/75468b6a8927/qims-13-05-2807-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/e893c0c731f9/qims-13-05-2807-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/3927e41f057a/qims-13-05-2807-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/8f965444fc93/qims-13-05-2807-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/7c5ce7dcfba7/qims-13-05-2807-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/2a038fde1d92/qims-13-05-2807-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/1ac422dc4678/qims-13-05-2807-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/75468b6a8927/qims-13-05-2807-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/e893c0c731f9/qims-13-05-2807-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c931/10167428/3927e41f057a/qims-13-05-2807-f7.jpg

相似文献

[1]
Deep-learning-based biomarker of spinal cartilage endplate health using ultra-short echo time magnetic resonance imaging.

Quant Imaging Med Surg. 2023-5-1

[2]
Evaluation of human cartilage endplate composition using MRI: Spatial variation, association with adjacent disc degeneration, and in vivo repeatability.

J Orthop Res. 2021-7

[3]
Ultra-short echo time MR imaging in assessing cartilage endplate damage and relationship between its lesion and disc degeneration for chronic low back pain patients.

BMC Med Imaging. 2023-4-20

[4]
Ultrashort time-to-echo MR morphology of cartilaginous endplate correlates with disc degeneration in the lumbar spine.

Eur Spine J. 2023-7

[5]
Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration.

J Med Imaging Radiat Oncol. 2013-8

[6]
The contributions of cartilage endplate composition and vertebral bone marrow fat to intervertebral disc degeneration in patients with chronic low back pain.

Eur Spine J. 2022-7

[7]
Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated With Adjacent Disc Degeneration.

Spine (Phila Pa 1976). 2018-5-15

[8]
Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times.

Sensors (Basel). 2024-9-9

[9]
3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

AJR Am J Roentgenol. 2018-4-9

[10]
A computational measurement of cartilaginous endplate structure using ultrashort time-to-echo MRI scanning.

Comput Methods Programs Biomed. 2017-5

引用本文的文献

[1]
Generative AI Models in Time-Varying Biomedical Data: Scoping Review.

J Med Internet Res. 2025-3-10

[2]
Ultrashort Echo Time Magnetic Resonance Morphology of Discovertebral Junction in Chronic Low Back Pain Subjects.

Tomography. 2025-1-23

[3]
Qualitative and Quantitative MR Imaging of the Cartilaginous Endplate: A Review.

J Magn Reson Imaging. 2025-4

[4]
Protective effects of Shensuitongzhi formula on intervertebral disc degeneration via downregulation of NF-κB signaling pathway and inflammatory response.

J Orthop Surg Res. 2024-1-19

[5]
Thresholding approaches for estimating paraspinal muscle fat infiltration using T1- and T2-weighted MRI: Comparative analysis using water-fat MRI.

JOR Spine. 2023-12-1

[6]
Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research.

JOR Spine. 2023-10-21

[7]
High contrast cartilaginous endplate imaging in spine using three dimensional dual-inversion recovery prepared ultrashort echo time (3D DIR-UTE) sequence.

Skeletal Radiol. 2024-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索