E Beibei, Zhang Shuang, Driscoll Charles T, Wen Tao
Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY 13244, United States.
Department of Oceanography, Texas A&M University, College Station, TX 77843, United States.
Sci Total Environ. 2023 Sep 1;889:164138. doi: 10.1016/j.scitotenv.2023.164138. Epub 2023 May 13.
Ongoing salinization and alkalinization in U.S. rivers have been attributed to inputs of road salt and effects of human-accelerated weathering in previous studies. Salinization poses a severe threat to human and ecosystem health, while human derived alkalinization implies increasing uncertainty in the dynamics of terrestrial sequestration of atmospheric carbon dioxide. A mechanistic understanding of whether and how human activities accelerate weathering and contribute to the geochemical changes in U.S. rivers is lacking. To address this uncertainty, we compiled dissolved sodium (salinity proxy) and alkalinity values along with 32 watershed properties ranging from hydrology, climate, geomorphology, geology, soil chemistry, land use, and land cover for 226 river monitoring sites across the coterminous U.S. Using these data, we built two machine-learning models to predict monthly-aggregated sodium and alkalinity fluxes at these sites. The sodium-prediction model detected human activities (represented by population density and impervious surface area) as major contributors to the salinity of U.S. rivers. In contrast, the alkalinity-prediction model identified natural processes as predominantly contributing to variation in riverine alkalinity flux, including runoff, carbonate sediment or siliciclastic sediment, soil pH and soil moisture. Unlike prior studies, our analysis suggests that the alkalinization in U.S. rivers is largely governed by local climatic and hydrogeological conditions.
在之前的研究中,美国河流持续的盐碱化被归因于道路盐分的输入以及人类加速风化的影响。盐碱化对人类和生态系统健康构成严重威胁,而人为导致的碱化意味着陆地封存大气二氧化碳动态变化的不确定性增加。目前尚缺乏对人类活动是否以及如何加速风化并导致美国河流地球化学变化的机制性理解。为了解决这一不确定性,我们收集了美国本土226个河流监测点的溶解钠(盐度指标)和碱度值,以及32个流域属性,这些属性涵盖水文、气候、地貌、地质、土壤化学、土地利用和土地覆盖等方面。利用这些数据,我们建立了两个机器学习模型来预测这些站点的月汇总钠通量和碱度通量。钠预测模型检测到人类活动(以人口密度和不透水表面积表示)是美国河流盐度的主要贡献因素。相比之下,碱度预测模型确定自然过程是河流碱度通量变化的主要贡献因素,包括径流、碳酸盐沉积物或硅质碎屑沉积物、土壤pH值和土壤湿度。与之前的研究不同,我们的分析表明,美国河流的碱化在很大程度上受当地气候和水文地质条件的控制。