Li Shoujie, Dong Xiao, Mao Jianing, Chen Wei, Chen Aohui, Wu Gangfeng, Zhu Chang, Li Guihua, Wei Yiheng, Liu Xiaohu, Wang Jiangjiang, Song Yanfang, Wei Wei
Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Small. 2023 Aug;19(35):e2301338. doi: 10.1002/smll.202301338. Epub 2023 May 14.
Electroreduction of CO to CO is a promising route for greenhouse gas resource utilization, but it still suffers from impractical current density and poor durability. Here, a nanosheet shell (NS) vertically standing on the Ag hollow fiber (NS@Ag HF) surface formed by electrochemical surface reconstruction is reported. As-prepared NS@Ag HF as a gas penetration electrode exhibited a high CO faradaic efficiency of 97% at an ultra-high current density of 2.0 A cm with a sustained performance for continuous >200 h operation. The experimental and theoretical studies reveal that promoted surface electronic structures of NS@Ag HF by the nanosheets not only suppress the competitive hydrogen evolution reaction but also facilitate the CO reduction kinetics. This work provides a feasible strategy for fabricating robust catalysts for highly efficient and stable CO reduction.
将二氧化碳电还原为一氧化碳是温室气体资源利用的一条有前景的途径,但它仍然存在电流密度不切实际和耐久性差的问题。在此,报道了一种通过电化学表面重构在银空心纤维(NS@Ag HF)表面垂直生长的纳米片壳(NS)。制备的NS@Ag HF作为气体渗透电极,在2.0 A cm的超高电流密度下表现出97%的高一氧化碳法拉第效率,并具有持续>200小时的连续运行性能。实验和理论研究表明,纳米片对NS@Ag HF表面电子结构的促进作用不仅抑制了竞争性析氢反应,还促进了一氧化碳还原动力学。这项工作为制备用于高效稳定一氧化碳还原的稳健催化剂提供了一种可行的策略。