Suppr超能文献

一种用于鉴别轴向骨骼中脊索瘤与巨细胞瘤的计算机断层扫描影像组学列线图。

A Computed Tomography Radiomics Nomogram in Differentiating Chordoma From Giant Cell Tumor in the Axial Skeleton.

作者信息

Nie Pei, Zhao Xia, Wang Ning, Ma Jinlong, Zuo Panli, Hao Dapeng, Yu Tengbo

机构信息

From the Departments of Radiology.

Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao.

出版信息

J Comput Assist Tomogr. 2023;47(3):453-459. doi: 10.1097/RCT.0000000000001436. Epub 2023 Jan 17.

Abstract

OBJECTIVE

The aim of the study is to develop and validate a computed tomography (CT) radiomics nomogram for preoperatively differentiating chordoma from giant cell tumor (GCT) in the axial skeleton.

METHODS

Seventy-three chordomas and 38 GCTs in axial skeleton were retrospectively included and were divided into a training cohort (n = 63) and a test cohort (n = 48). The radiomics features were extracted from CT images. A radiomics signature was developed by using the least absolute shrinkage and selection operator model, and a radiomics score (Rad-score) was acquired. By combining the Rad-score with independent clinical risk factors using multivariate logistic regression model, a radiomics nomogram was established. Calibration and receiver operator characteristic curves were used to assess the performance of the nomogram.

RESULTS

Five features were selected to construct the radiomics signature. The radiomics signature showed favorable discrimination in the training cohort (area under the curve [AUC], 0.860; 95% confidence interval [CI], 0.760-0.960) and the test cohort (AUC, 0.830; 95% CI, 0.710-0.950). Age and location were the independent clinical factors. The radiomics nomogram combining the Rad-score with independent clinical factors showed good discrimination capability in the training cohort (AUC, 0.930; 95% CI, 0.880-0.990) and the test cohort (AUC, 0.980; 95% CI, 0.940-1.000) and outperformed the radiomics signature ( z = 2.768, P = 0.006) in the test cohort.

CONCLUSIONS

The CT radiomics nomogram shows good predictive efficacy in differentiating chordoma from GCT in the axial skeleton, which might facilitate clinical decision making.

摘要

目的

本研究旨在开发并验证一种计算机断层扫描(CT)影像组学列线图,用于术前鉴别中轴骨脊索瘤与骨巨细胞瘤(GCT)。

方法

回顾性纳入73例中轴骨脊索瘤和38例中轴骨GCT,并分为训练队列(n = 63)和测试队列(n = 48)。从CT图像中提取影像组学特征。使用最小绝对收缩和选择算子模型开发影像组学特征,并获得影像组学评分(Rad-score)。通过多变量逻辑回归模型将Rad-score与独立临床危险因素相结合,建立影像组学列线图。采用校准曲线和受试者工作特征曲线评估列线图的性能。

结果

选择5个特征构建影像组学特征。影像组学特征在训练队列(曲线下面积[AUC],0.860;95%置信区间[CI],0.760 - 0.960)和测试队列(AUC,0.830;95% CI,0.710 - 0.950)中显示出良好的鉴别能力。年龄和部位是独立的临床因素。将Rad-score与独立临床因素相结合的影像组学列线图在训练队列(AUC,0.930;95% CI,0.880 - 0.990)和测试队列(AUC,0.980;95% CI,0.940 - 1.000)中显示出良好的鉴别能力,且在测试队列中优于影像组学特征(z = 2.768,P = 0.006)。

结论

CT影像组学列线图在鉴别中轴骨脊索瘤与GCT方面显示出良好的预测效能,可能有助于临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验