Suppr超能文献

基于 CT 的放射组学列线图:一种在非肝硬化肝脏中鉴别肝细胞腺瘤与肝细胞癌的潜在工具。

CT-Based Radiomics Nomogram: A Potential Tool for Differentiating Hepatocellular Adenoma From Hepatocellular Carcinoma in the Noncirrhotic Liver.

机构信息

Department of Radiology, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.

Department of Radiology, Shandong Provincial Hospital, Jinan, Shandong, China.

出版信息

Acad Radiol. 2021 Jun;28(6):799-807. doi: 10.1016/j.acra.2020.04.027. Epub 2020 May 5.

Abstract

RATIONALE AND OBJECTIVES

To evaluate the value of a radiomics nomogram for preoperative differentiating hepatocellular adenoma (HCA) from hepatocellular carcinoma (HCC) in the noncirrhotic liver.

MATERIALS AND METHODS

One hundred and thirty-one patients with HCA (n = 46) and HCC (n = 85) were divided into a training set (n = 93) and a test set (n = 38). Clinical data and CT findings were analyzed. Radiomics features were extracted from the triphasic contrast CT images. A radiomics signature was constructed with the least absolute shrinkage and selection operator algorithm and a radiomics score was calculated. Combined with the radiomics score and independent clinical factors, a radiomics nomogram was developed by multivariate logistic regression analysis. The performance of the radiomics nomogram was assessed by calibration, discrimination and clinical usefulness.

RESULTS

Gender, age, and enhancement pattern were the independent clinical factors. Three thousand seven hundred and sixty-eight features were extracted and reduced to 7 features as the optimal discriminators to build the radiomics signature. The radiomics nomogram (area under the curve [AUC], 0.96; 95% confidence interval [CI], 0.93-0.99) and the clinical factors model (AUC, 0.93; 95%CI, 0.88-0.99) showed better discrimination capability (p = 0.001 and 0.047) than the radiomics signature (AUC, 0.83; 95%CI, 0.74-0.92) in the training set. In the test set, the radiomics nomogram (AUC, 0.94; 95%CI, 0.87-1.00) performed better (p = 0.013) than the radiomics signature (AUC, 0.75; 95%CI, 0.59-0.91). Decision curve analysis showed the radiomics nomogram outperformed the clinical factors model and the radiomics signature in terms of clinical usefulness.

CONCLUSION

The CT-based radiomics nomogram has the potential to accurately differentiate HCA from HCC in the noncirrhotic liver.

摘要

背景与目的

评估基于影像组学的Nomogram 在术前区分非肝硬化肝脏中的肝细胞腺瘤(HCA)与肝细胞癌(HCC)的价值。

材料与方法

共纳入 131 例 HCA(n=46)和 HCC(n=85)患者,将其分为训练集(n=93)和测试集(n=38)。分析临床数据和 CT 表现。从三期对比 CT 图像中提取影像组学特征。采用最小绝对值收缩和选择算子算法构建影像组学特征模型,并计算影像组学评分。结合影像组学评分和独立临床因素,通过多变量逻辑回归分析建立影像组学Nomogram。通过校准、鉴别和临床实用性评估影像组学 Nomogram 的性能。

结果

性别、年龄和增强模式是独立的临床因素。提取了 3768 个特征,降维至 7 个最佳鉴别特征来构建影像组学特征模型。影像组学 Nomogram(曲线下面积[AUC]:0.96;95%置信区间[CI]:0.93-0.99)和临床因素模型(AUC:0.93;95%CI:0.88-0.99)在训练集的鉴别能力(p=0.001 和 0.047)优于影像组学特征模型(AUC:0.83;95%CI:0.74-0.92)。在测试集中,影像组学 Nomogram(AUC:0.94;95%CI:0.87-1.00)的表现优于影像组学特征模型(AUC:0.75;95%CI:0.59-0.91)(p=0.013)。决策曲线分析表明,影像组学 Nomogram 在临床实用性方面优于临床因素模型和影像组学特征模型。

结论

基于 CT 的影像组学 Nomogram 有可能准确地区分非肝硬化肝脏中的 HCA 和 HCC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验