Suppr超能文献

自然与深度网络视觉中的实体形状编码的早期出现。

Early Emergence of Solid Shape Coding in Natural and Deep Network Vision.

机构信息

Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Curr Biol. 2021 Jan 11;31(1):51-65.e5. doi: 10.1016/j.cub.2020.09.076. Epub 2020 Oct 22.

Abstract

Area V4 is the first object-specific processing stage in the ventral visual pathway, just as area MT is the first motion-specific processing stage in the dorsal pathway. For almost 50 years, coding of object shape in V4 has been studied and conceived in terms of flat pattern processing, given its early position in the transformation of 2D visual images. Here, however, in awake monkey recording experiments, we found that roughly half of V4 neurons are more tuned and responsive to solid, 3D shape-in-depth, as conveyed by shading, specularity, reflection, refraction, or disparity cues in images. Using 2-photon functional microscopy, we found that flat- and solid-preferring neurons were segregated into separate modules across the surface of area V4. These findings should impact early shape-processing theories and models, which have focused on 2D pattern processing. In fact, our analyses of early object processing in AlexNet, a standard visual deep network, revealed a similar distribution of sensitivities to flat and solid shape in layer 3. Early processing of solid shape, in parallel with flat shape, could represent a computational advantage discovered by both primate brain evolution and deep-network training.

摘要

V4 区是腹侧视觉通路中的第一个针对特定对象的处理阶段,就像 MT 区是背侧通路中的第一个针对特定运动的处理阶段一样。近 50 年来,由于 V4 处于 2D 视觉图像转换的早期阶段,其在物体形状编码方面的研究和构想一直基于平面模式处理。然而,在清醒猴子的记录实验中,我们发现大约一半的 V4 神经元对阴影、镜面反射、反射、折射或视差线索所传达的立体、3D 形状深度更为敏感和响应。使用双光子功能显微镜,我们发现平面和立体偏好神经元在 V4 区域的表面上分成了不同的模块。这些发现应该会对早期专注于 2D 模式处理的形状处理理论和模型产生影响。事实上,我们对标准视觉深度网络 AlexNet 中早期物体处理的分析表明,在第 3 层中对平面和立体形状的敏感性分布相似。立体形状的早期处理与平面形状并行,可以代表灵长类动物大脑进化和深度网络训练发现的一种计算优势。

相似文献

3
Neural Coding for Shape and Texture in Macaque Area V4.猴 V4 区的形状和纹理的神经编码。
J Neurosci. 2019 Jun 12;39(24):4760-4774. doi: 10.1523/JNEUROSCI.3073-18.2019. Epub 2019 Apr 4.
5
A sparse object coding scheme in area V4.V4 区的稀疏对象编码方案。
Curr Biol. 2011 Feb 22;21(4):288-93. doi: 10.1016/j.cub.2011.01.013.
6
Functional organization for color and orientation in macaque V4.猴 V4 中颜色和方向的功能组织。
Nat Neurosci. 2010 Dec;13(12):1542-8. doi: 10.1038/nn.2676. Epub 2010 Nov 14.
7
Population coding of shape in area V4.V4区中形状的群体编码
Nat Neurosci. 2002 Dec;5(12):1332-8. doi: 10.1038/nn972.
8
Analogous intermediate shape coding in vision and touch.视觉与触觉中类似的中间形状编码。
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16457-62. doi: 10.1073/pnas.0904186106. Epub 2009 Sep 4.
9
The neural basis of image segmentation in the primate brain.灵长类大脑中图像分割的神经基础。
Neuroscience. 2015 Jun 18;296:101-9. doi: 10.1016/j.neuroscience.2014.09.051. Epub 2014 Oct 2.

引用本文的文献

本文引用的文献

1
Tangential distribution of cell type and direction selectivity in monkey area MT.猕猴MT区细胞类型和方向选择性的切线分布
An Acad Bras Cienc. 2020 Jun 12;92(2):e20190564. doi: 10.1590/0001-3765202020190564. eCollection 2020.
5
An Orientation Map for Disparity-Defined Edges in Area V4.V4 区中视差定义边缘的方位图。
Cereb Cortex. 2019 Feb 1;29(2):666-679. doi: 10.1093/cercor/bhx348.
9
Efficient Receptive Field Tiling in Primate V1.灵长类动物初级视觉皮层中高效的感受野平铺
Neuron. 2016 Aug 17;91(4):893-904. doi: 10.1016/j.neuron.2016.07.015. Epub 2016 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验