Suppr超能文献

基于灵活且经济的制造流水线实现的多功能微流控生物制造平台。

Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline.

机构信息

School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B5 7EG, UK.

EPSRC Future Metrology Hub, School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3D, UK.

出版信息

Adv Healthc Mater. 2023 Oct;12(26):e2300636. doi: 10.1002/adhm.202300636. Epub 2023 May 12.

Abstract

Microfluidics have transformed diagnosis and screening in regenerative medicine. Recently, they are showing much promise in biofabrication. However, their adoption is inhibited by costly and drawn-out lithographic processes thus limiting progress. Here, multi-material fibers with complex core-shell geometries with sizes matching those of human arteries and arterioles are fabricated employing versatile microfluidic devices produced using an agile and inexpensive manufacturing pipeline. The pipeline consists of material extrusion additive manufacturing with an innovative continuously varied extrusion (CONVEX) approach to produce microfluidics with complex seamless geometries including, novel variable-width zigzag (V-zigzag) mixers with channel widths ranging from 100-400 µm and hydrodynamic flow-focusing components. The microfluidic systems facilitated rapid mixing of fluids by decelerating the fluids at specific zones to allow for increased diffusion across the interfaces. Better mixing even at high flow rates (100-1000 µL min ) whilst avoiding turbulence led to high cell cytocompatibility (>86%) even when 100 µm nozzles are used. The presented 3D-printed microfluidic system is versatile, simple and efficient, offering a great potential to significantly advance the microfluidic platform in regenerative medicine.

摘要

微流控技术已经改变了再生医学中的诊断和筛选。最近,它们在生物制造领域显示出了很大的前景。然而,由于昂贵且耗时的光刻工艺,它们的应用受到了限制,从而限制了进展。在这里,使用多功能微流控设备制造了具有复杂核壳结构且尺寸与人体动脉和小动脉相匹配的多材料纤维,这些微流控设备采用了灵活且廉价的制造管道的材料挤出增材制造和创新的连续变化挤出(CONVEX)方法。该管道由材料挤出增材制造组成,采用创新的连续变化挤出(CONVEX)方法,可生产具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm,以及具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm,以及具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm,以及具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm,以及具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm,以及具有复杂无缝几何形状的微流控器件,包括新颖的可变宽度之字形(V-之字形)混合器,其通道宽度范围为 100-400 µm。微流控系统通过在特定区域使流体减速来促进快速混合,从而允许在界面处增加扩散。即使在高流速(100-1000 µL min )下也能实现更好的混合,同时避免湍流,即使使用 100 µm 的喷嘴也能实现高细胞细胞相容性(>86%)。所提出的 3D 打印微流控系统具有多功能性、简单性和高效性,为显著推进再生医学中的微流控平台提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/948b/11468497/fa6c29be615a/ADHM-12-2300636-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验