Suppr超能文献

在广泛的温度、速度和层时间范围内,挤出增材制造中存在散装材料粘结强度。

Bulk-Material Bond Strength Exists in Extrusion Additive Manufacturing for a Wide Range of Temperatures, Speeds, and Layer Times.

作者信息

Moetazedian Amirpasha, Allum James, Gleadall Andrew, Silberschmidt Vadim V

机构信息

Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.

出版信息

3D Print Addit Manuf. 2023 Jun 1;10(3):514-523. doi: 10.1089/3dp.2021.0112. Epub 2023 Jun 8.

Abstract

Do extrusion temperature, printing speed, and layer time affect mechanical performance of interlayer bonds in material extrusion additive manufacturing (MEAM)? The question is one of the main challenges in 3D printing of polymers. This article aims to analyze the independent effect of printing parameters on interlayer bonding in MEAM. In previous research, printing parameters were unavoidably interrelated, such as printing speed and layer cooling time. Here, original specimen designs allow the effects to be studied independently for the first time to provide new understanding of the effects of a wide range of thermal factors on mechanical properties of 3D-printed polylactide. The experimental approach used direct GCode design to manufacture specially designed single-filament-thick specimens for tensile testing to measure mechanical and thermal properties normal to the interface between layers. In total, five different extrusion temperatures (a range of 60°C), five different printing speeds (a 16-fold change in the magnitude) and four different layer times (an 8-fold change) were independently studied. The results demonstrate interlayer bond strength to be equivalent to that of the bulk material within experimental scatter. This study provides strong evidence about the crucial role of microscale geometry for apparent interlayer bond strength relative to the role of thermal factors. By designing specimens specifically for the MEAM process, this study clearly demonstrates that bulk-material strength can be achieved for interlayer bonds in MEAM even when printing parameters change severalfold. Widespread industrial and academic efforts to improve interlayer bonding should be refocused to study extrusion geometry-the primary cause of anisotropy in MEAM.

摘要

挤出温度、打印速度和层时间会影响材料挤出增材制造(MEAM)中层间键合的机械性能吗?这个问题是聚合物3D打印中的主要挑战之一。本文旨在分析打印参数对MEAM中层间键合的独立影响。在先前的研究中,打印参数不可避免地相互关联,例如打印速度和层冷却时间。在此,原始试样设计首次允许独立研究这些影响,以提供对一系列热因素对3D打印聚乳酸机械性能影响的新理解。实验方法使用直接GCode设计来制造专门设计的单丝厚度试样进行拉伸测试,以测量垂直于层间界面的机械和热性能。总共独立研究了五种不同的挤出温度(范围为60°C)、五种不同的打印速度(幅度变化16倍)和四种不同的层时间(变化8倍)。结果表明,在实验误差范围内,层间粘结强度与块状材料相当。本研究提供了有力证据,证明相对于热因素的作用,微观几何形状对表观层间粘结强度起着关键作用。通过专门为MEAM工艺设计试样,本研究清楚地表明,即使打印参数变化几倍,MEAM中的层间键合也能达到块状材料的强度。为改善层间键合而进行的广泛工业和学术努力应重新聚焦于研究挤出几何形状——MEAM中各向异性的主要原因。

相似文献

本文引用的文献

2
3D Printing metamaterials towards tissue engineering.用于组织工程的 3D 打印超材料
Appl Mater Today. 2020 Sep;20. doi: 10.1016/j.apmt.2020.100752. Epub 2020 Jul 30.
8
Polymers for 3D Printing and Customized Additive Manufacturing.用于3D打印和定制增材制造的聚合物。
Chem Rev. 2017 Aug 9;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074. Epub 2017 Jul 30.
10
Analysis of structural rearrangements of poly(lactic acid) in the presence of water.水存在下聚乳酸的结构重排分析
J Phys Chem B. 2014 Apr 17;118(15):4185-93. doi: 10.1021/jp500219j. Epub 2014 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验