Moetazedian Amirpasha, Allum James, Gleadall Andrew, Silberschmidt Vadim V
Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.
3D Print Addit Manuf. 2023 Jun 1;10(3):514-523. doi: 10.1089/3dp.2021.0112. Epub 2023 Jun 8.
Do extrusion temperature, printing speed, and layer time affect mechanical performance of interlayer bonds in material extrusion additive manufacturing (MEAM)? The question is one of the main challenges in 3D printing of polymers. This article aims to analyze the independent effect of printing parameters on interlayer bonding in MEAM. In previous research, printing parameters were unavoidably interrelated, such as printing speed and layer cooling time. Here, original specimen designs allow the effects to be studied independently for the first time to provide new understanding of the effects of a wide range of thermal factors on mechanical properties of 3D-printed polylactide. The experimental approach used direct GCode design to manufacture specially designed single-filament-thick specimens for tensile testing to measure mechanical and thermal properties normal to the interface between layers. In total, five different extrusion temperatures (a range of 60°C), five different printing speeds (a 16-fold change in the magnitude) and four different layer times (an 8-fold change) were independently studied. The results demonstrate interlayer bond strength to be equivalent to that of the bulk material within experimental scatter. This study provides strong evidence about the crucial role of microscale geometry for apparent interlayer bond strength relative to the role of thermal factors. By designing specimens specifically for the MEAM process, this study clearly demonstrates that bulk-material strength can be achieved for interlayer bonds in MEAM even when printing parameters change severalfold. Widespread industrial and academic efforts to improve interlayer bonding should be refocused to study extrusion geometry-the primary cause of anisotropy in MEAM.
挤出温度、打印速度和层时间会影响材料挤出增材制造(MEAM)中层间键合的机械性能吗?这个问题是聚合物3D打印中的主要挑战之一。本文旨在分析打印参数对MEAM中层间键合的独立影响。在先前的研究中,打印参数不可避免地相互关联,例如打印速度和层冷却时间。在此,原始试样设计首次允许独立研究这些影响,以提供对一系列热因素对3D打印聚乳酸机械性能影响的新理解。实验方法使用直接GCode设计来制造专门设计的单丝厚度试样进行拉伸测试,以测量垂直于层间界面的机械和热性能。总共独立研究了五种不同的挤出温度(范围为60°C)、五种不同的打印速度(幅度变化16倍)和四种不同的层时间(变化8倍)。结果表明,在实验误差范围内,层间粘结强度与块状材料相当。本研究提供了有力证据,证明相对于热因素的作用,微观几何形状对表观层间粘结强度起着关键作用。通过专门为MEAM工艺设计试样,本研究清楚地表明,即使打印参数变化几倍,MEAM中的层间键合也能达到块状材料的强度。为改善层间键合而进行的广泛工业和学术努力应重新聚焦于研究挤出几何形状——MEAM中各向异性的主要原因。