文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能与风湿性疾病的实验室数据。

Artificial intelligence and laboratory data in rheumatic diseases.

机构信息

Department of Medicine-DIMED, University of Padova, Padova, Italy.

Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy.

出版信息

Clin Chim Acta. 2023 Jun 1;546:117388. doi: 10.1016/j.cca.2023.117388. Epub 2023 May 13.


DOI:10.1016/j.cca.2023.117388
PMID:37187221
Abstract

Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.

摘要

人工智能(AI)为基础的医疗技术正在迅速发展成为临床实践的可行解决方案。机器学习(ML)算法可以处理越来越多的实验室数据,如基因表达免疫表型数据和生物标志物。近年来,ML 分析对于研究复杂的慢性疾病(如风湿性疾病,具有多种诱因的异质条件)变得尤为有用。许多研究使用 ML 对患者进行分类和提高诊断,对风险分层和确定疾病亚型,以及发现生物标志物和基因特征。本综述旨在提供使用实验室数据的特定风湿性疾病的 ML 模型的例子,并对相关的优势和局限性进行一些了解。更好地理解和未来应用这些分析策略将有助于为风湿性疾病患者开发精准医学。

相似文献

[1]
Artificial intelligence and laboratory data in rheumatic diseases.

Clin Chim Acta. 2023-6-1

[2]
Emerging role of eHealth in the identification of very early inflammatory rheumatic diseases.

Best Pract Res Clin Rheumatol. 2019-8-27

[3]
Narrative Review of Machine Learning in Rheumatic and Musculoskeletal Diseases for Clinicians and Researchers: Biases, Goals, and Future Directions.

J Rheumatol. 2022-11

[4]
Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing.

Clin Chem. 2021-12-30

[5]
Application of Machine Learning in Rheumatic Immune Diseases.

J Healthc Eng. 2022

[6]
Precision Medicine Approaches with Metabolomics and Artificial Intelligence.

Int J Mol Sci. 2022-9-24

[7]
Artificial Intelligence, Machine Learning, and Medicine: A Little Background Goes a Long Way Toward Understanding.

Arthroscopy. 2021-6

[8]
Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases.

Circ J. 2021-8-25

[9]
Collaborative AI and Laboratory Medicine integration in precision cardiovascular medicine.

Clin Chim Acta. 2020-10

[10]
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.

Int J Mol Sci. 2020-2-1

引用本文的文献

[1]
The digital transformation and future era: bibliometric view of artificial intelligence application in pediatric surgery.

Front Pediatr. 2025-6-12

[2]
Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization.

J Clin Med. 2025-3-4

[3]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索