Suppr超能文献

从语言模型到大尺度的食品和生物医学知识图谱。

From language models to large-scale food and biomedical knowledge graphs.

机构信息

Jožef Stefan Institute, Ljubljana, 1000, Slovenia.

Jožef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia.

出版信息

Sci Rep. 2023 May 15;13(1):7815. doi: 10.1038/s41598-023-34981-4.

Abstract

Knowledge about the interactions between dietary and biomedical factors is scattered throughout uncountable research articles in an unstructured form (e.g., text, images, etc.) and requires automatic structuring so that it can be provided to medical professionals in a suitable format. Various biomedical knowledge graphs exist, however, they require further extension with relations between food and biomedical entities. In this study, we evaluate the performance of three state-of-the-art relation-mining pipelines (FooDis, FoodChem and ChemDis) which extract relations between food, chemical and disease entities from textual data. We perform two case studies, where relations were automatically extracted by the pipelines and validated by domain experts. The results show that the pipelines can extract relations with an average precision around 70%, making new discoveries available to domain experts with reduced human effort, since the domain experts should only evaluate the results, instead of finding, and reading all new scientific papers.

摘要

关于饮食和生物医学因素之间相互作用的知识分散在无数未结构化的研究文章中(例如文本、图像等),需要自动构建,以便以合适的格式提供给医疗专业人员。目前存在各种生物医学知识图谱,但它们需要进一步扩展食物和生物医学实体之间的关系。在这项研究中,我们评估了三种最先进的关系挖掘管道(FooDis、FoodChem 和 ChemDis)的性能,这些管道从文本数据中提取食物、化学和疾病实体之间的关系。我们进行了两项案例研究,其中关系由管道自动提取,并由领域专家验证。结果表明,这些管道可以以平均精度约 70%的精度提取关系,从而为领域专家提供新的发现,减少了人工工作量,因为领域专家只需评估结果,而不必查找和阅读所有新的科学论文。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3565/10185525/1690648081c0/41598_2023_34981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验