Petryniak J, Goldstein I J
Biochemistry. 1986 May 20;25(10):2829-38. doi: 10.1021/bi00358a014.
Evonymus europaea lectin precipitated with alpha DGal(1----3) beta DGal(1----4)beta DGlcNAc-bovine serum albumin (BSA), alpha LFuc(1----2)beta DGal(1----3)beta DGlcNAc-BSA, alpha LFuc(1----2)beta DGal(1----4)DGlcNAc, and alpha DGal(1----3)[alpha LFuc(1----2)]beta DGal-BSA. However, the lectin neither precipitated with alpha LFuc(1----2)-beta DGal-BSA, alpha DGal(1----3)beta DGal-BSA, or beta DGal(1----4)beta DGlcNAc-BSA nor agglutinated erythrocytes of Oh phenotype having multiple terminal beta DGal(1----4)beta DGlcNAc residues. These results indicate that the minimal structural requirement for glycoprotein precipitation or cell agglutination by the lectin includes any of the three trisaccharides (fucosylated or nonfucosylated) derived from the blood group B tetrasaccharide. The monosaccharides linked to the beta-D-galactosyl residue in the blood group B tetrasaccharide, namely, alpha-D-galactose, alpha-L-fucose, and N-acetyl-beta-D-glucosamine, participate almost equally in binding to the lectin in as much as removal of any one of these sugars reduces the inhibiting potency of the resulting trisaccharide. alpha LFuc(1----2)beta DGal(1----3)beta DGlcNAc-BSA (H type 1) and alpha LFuc(1----2)beta DGal(1----4)beta DGlcNAc (H type 2) were precipitated to the same extent. The E. europaea lectin neither precipitated alpha DGal(1----4)-beta DGal(1----4)beta DGlcNAc-BSA, Lea-BSA, Leb-BSA, or beta DGlcNAc(1----4)[alpha LFuc(1----6)]beta DGlcNAc-BSA nor agglutinated Oh,Lea and Oh,Leb erythrocytes, demonstrating that terminal D-galactose linked alpha-(1----4) to subterminal beta-D-galactose, or alpha-L-fucose linked to N-acetylglucosamine, prevents lectin binding. Corey-Pauling-Koltun molecular models, built on the basis of data from 1H NMR and hard-sphere exo-anomeric (HSEA) calculations provided by Lemieux and co-workers [Lemieux, R. U., Bock, K., Delbaere, L. T. J., Koto, S., & Rao, V. S. (1980) Can. J. Chem. 58, 631-653], show that these alpha-D-galactosyl and alpha-L-fucosyl groups act to sterically hinder lectin binding to these oligosaccharides; these observations also suggest that the lectin binds to the beta-side of these oligosaccharides. These sides, on both blood group H type 1 and blood group H type 2 oligosaccharides, provide a similar contour which can fully account for their equal reactivity with E. europaea lectin. The only difference found between Lotus and Ulex I lectins in precipitating ability was that only Lotus precipitated with beta DGlcNAc(1----4)[alpha LFuc(1----6)]beta DGlcNAc-BSA.(ABSTRACT TRUNCATED AT 400 WORDS)
欧洲卫矛凝集素能与α-D-半乳糖(1→3)β-D-半乳糖(1→4)β-D-葡萄糖胺-牛血清白蛋白(BSA)、α-L-岩藻糖(1→2)β-D-半乳糖(1→3)β-D-葡萄糖胺-BSA、α-L-岩藻糖(1→2)β-D-半乳糖(1→4)D-葡萄糖胺以及α-D-半乳糖(1→3)[α-L-岩藻糖(1→2)]β-D-半乳糖-BSA发生沉淀反应。然而,该凝集素既不与α-L-岩藻糖(1→2)-β-D-半乳糖-BSA、α-D-半乳糖(1→3)β-D-半乳糖-BSA或β-D-半乳糖(1→4)β-D-葡萄糖胺-BSA发生沉淀反应,也不凝集具有多个末端β-D-半乳糖(1→4)β-D-葡萄糖胺残基的Oh血型红细胞。这些结果表明,该凝集素引起糖蛋白沉淀或细胞凝集的最小结构要求包括血型B四糖衍生的三种三糖(岩藻糖基化或非岩藻糖基化)中的任何一种。血型B四糖中与β-D-半乳糖残基相连的单糖,即α-D-半乳糖、α-L-岩藻糖和N-乙酰-β-D-葡萄糖胺,在与凝集素结合中几乎同等参与,因为去除这些糖中的任何一种都会降低所得三糖的抑制效力。α-L-岩藻糖(1→2)β-D-半乳糖(1→3)β-D-葡萄糖胺-BSA(H1型)和α-L-岩藻糖(1→2)β-D-半乳糖(1→4)β-D-葡萄糖胺(H2型)的沉淀程度相同。欧洲卫矛凝集素既不与α-D-半乳糖(1→4)-β-D-半乳糖(1→4)β-D-葡萄糖胺-BSA、Lea-BSA、Leb-BSA或β-D-葡萄糖胺(1→4)[α-L-岩藻糖(1→6)]β-D-葡萄糖胺-BSA发生沉淀反应,也不凝集Oh、Lea和Oh、Leb红细胞,这表明末端D-半乳糖以α-(1→4)连接到亚末端β-D-半乳糖,或α-L-岩藻糖连接到N-乙酰葡萄糖胺会阻止凝集素结合。基于Lemieux及其同事提供的1H NMR数据和硬球外端异头物(HSEA)计算结果构建的Corey-Pauling-Koltun分子模型[Lemieux, R. U., Bock, K., Delbaere, L. T. J., Koto, S., & Rao, V. S. (1980) Can. J. Chem. 58, 631 - 653]表明,这些α-D-半乳糖基和α-L-岩藻糖基在空间上阻碍凝集素与这些寡糖结合;这些观察结果还表明凝集素与这些寡糖的β侧结合。血型H1型和血型H2型寡糖的这些侧面提供了相似的轮廓,这可以充分解释它们与欧洲卫矛凝集素的同等反应性。在沉淀能力方面,百脉根凝集素和荆豆I凝集素之间发现的唯一差异是只有百脉根能与β-D-葡萄糖胺(1→4)[α-L-岩藻糖(1→6)]β-D-葡萄糖胺-BSA发生沉淀反应。(摘要截选至400字)