Narciso Maria, Martínez África, Júnior Constança, Díaz-Valdivia Natalia, Ulldemolins Anna, Berardi Massimiliano, Neal Kate, Navajas Daniel, Farré Ramon, Alcaraz Jordi, Almendros Isaac, Gavara Núria
Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain.
The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
Cancers (Basel). 2023 Apr 21;15(8):2404. doi: 10.3390/cancers15082404.
Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.
肿瘤的力学变化长期以来一直与恶性程度增加和治疗抗性相关联,并归因于肿瘤细胞外基质(ECM)的力学变化。然而,据我们所知,尚未有关于去细胞肿瘤的力学研究。在此,我们在两种肺转移模型中研究了肿瘤ECM的生化和力学进展:肺癌(CAR)和黑色素瘤(MEL)。我们对转移的肺切片进行去细胞处理,测量肿瘤ECM的微观力学,并对切片进行ECM蛋白、增殖和细胞死亡标志物染色。将相同的方法应用于用临床批准的抗纤维化药物尼达尼布治疗的MEL小鼠。与健康ECM(约0.40 kPa)相比,CAR和MEL肺大转移灶产生了高度致密和坚硬的ECM(CAR为1.79±1.32 kPa,MEL为6.39±3.37 kPa)。在两种模型中,纤连蛋白从早期阶段(约118%)到发展为大转移灶(约260%)均过度表达。令人惊讶的是,尼达尼布使ECM占据的肿瘤面积增加了4倍(从5.1±1.6%增加到18.6±8.9%),ECM硬度增加了2倍(从6.39±3.37 kPa增加到12.35±5.74 kPa)。这种硬度的增加与坏死的增加密切相关,这揭示了肿瘤缺氧与ECM沉积和硬度之间的潜在联系。我们的研究结果突出了纤连蛋白和肿瘤ECM力学作为癌症治疗中具有吸引力的靶点,并支持需要鉴定新的抗纤维化药物以消除转移灶中异常的ECM力学。