Suppr超能文献

纳米医学治疗胎盘疾病的合理设计:开创女性生殖健康新时代。

Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Small. 2024 Oct;20(41):e2300852. doi: 10.1002/smll.202300852. Epub 2023 May 16.

Abstract

The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.

摘要

胎盘是一种在怀孕期间形成的暂时性器官,作为生物屏障,调节母体和胎儿循环之间的物质交换。胎盘疾病,如子痫前期、胎儿生长受限、胎盘植入综合征和妊娠滋养细胞疾病,源于怀孕期间胎盘发育功能失调,可能导致母婴严重并发症。不幸的是,这些疾病的治疗选择非常有限。在设计用于怀孕期间使用的治疗方法时面临的挑战包括选择性地将有效载荷递送到胎盘,同时保护胎儿免受潜在的毒性副作用。纳米医学在克服这些障碍方面具有巨大的潜力;纳米载体的多功能性和模块化特性,包括延长的循环时间、细胞内传递和器官特异性靶向,可控制治疗剂与胎盘的相互作用。本综述讨论了纳米医学策略在治疗和诊断胎盘疾病方面的应用,重点是了解这些疾病背后的独特病理生理学。最后,对这些胎盘疾病病理生理机制的先前研究揭示了新的疾病靶点。这里强调这些靶点,以激励合理设计精密纳米载体,从而改善胎盘疾病的治疗选择。

相似文献

1
Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health.
Small. 2024 Oct;20(41):e2300852. doi: 10.1002/smll.202300852. Epub 2023 May 16.
2
Nanotechnological approaches for the treatment of placental dysfunction: recent trends and future perspectives.
Nanomedicine (Lond). 2023 Nov;18(26):1961-1978. doi: 10.2217/nnm-2023-0194. Epub 2023 Nov 22.
4
Nanomedicines: An approach to treat placental insufficiency and the current challenges.
J Control Release. 2023 Aug;360:57-68. doi: 10.1016/j.jconrel.2023.06.003. Epub 2023 Jun 21.
5
Nanomedicine for Maternal and Fetal Health.
Small. 2024 Oct;20(41):e2303682. doi: 10.1002/smll.202303682. Epub 2023 Oct 10.
6
The Application of Engineered Nanomaterials in Perinatal Therapeutics.
Small. 2024 Oct;20(41):e2303072. doi: 10.1002/smll.202303072. Epub 2023 Jul 12.
7
Engineering nanosystems for regulating reproductive health in women.
Theranostics. 2025 Jan 1;15(2):439-459. doi: 10.7150/thno.102626. eCollection 2025.
8
An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array.
Am J Obstet Gynecol. 2022 Feb;226(2S):S963-S972. doi: 10.1016/j.ajog.2020.10.023. Epub 2021 Mar 9.
9
Placental bed research: II. Functional and immunological investigations of the placental bed.
Am J Obstet Gynecol. 2019 Nov;221(5):457-469. doi: 10.1016/j.ajog.2019.07.010. Epub 2019 Jul 6.
10
Expert review: preeclampsia Type I and Type II.
Am J Obstet Gynecol MFM. 2023 Dec;5(12):101203. doi: 10.1016/j.ajogmf.2023.101203. Epub 2023 Oct 21.

引用本文的文献

1
Probing the Role of Lipid Nanoparticle Elasticity on mRNA Delivery to the Placenta.
Nano Lett. 2025 Mar 26;25(12):4800-4808. doi: 10.1021/acs.nanolett.4c06241. Epub 2025 Mar 14.
2
Engineering nanosystems for regulating reproductive health in women.
Theranostics. 2025 Jan 1;15(2):439-459. doi: 10.7150/thno.102626. eCollection 2025.
3
Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia.
Nature. 2025 Jan;637(8045):412-421. doi: 10.1038/s41586-024-08291-2. Epub 2024 Dec 11.
6
EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta.
J Control Release. 2024 Jul;371:455-469. doi: 10.1016/j.jconrel.2024.05.036. Epub 2024 Jun 10.

本文引用的文献

1
Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach.
Bioact Mater. 2023 Dec 22;34:125-137. doi: 10.1016/j.bioactmat.2023.11.014. eCollection 2024 Apr.
2
Ionizable Lipid Nanoparticles for mRNA Delivery to the Placenta during Pregnancy.
J Am Chem Soc. 2023 Mar 1;145(8):4691-4706. doi: 10.1021/jacs.2c12893. Epub 2023 Feb 15.
3
Circulating microparticle proteins predict pregnancies complicated by placenta accreta spectrum.
Sci Rep. 2023 Jan 5;12(1):21922. doi: 10.1038/s41598-022-24869-0.
4
Placenta-Targeted Nanoparticles Loaded with PFKFB3 Overexpression Plasmids Enhance Angiogenesis and Placental Function.
Bioengineering (Basel). 2022 Nov 4;9(11):652. doi: 10.3390/bioengineering9110652.
5
The epidermal growth factor receptor in healthy pregnancy and preeclampsia.
J Mol Endocrinol. 2022 Dec 7;70(1). doi: 10.1530/JME-22-0105. Print 2023 Jan 1.
8
Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review.
J Pers Med. 2022 Aug 17;12(8):1324. doi: 10.3390/jpm12081324.
9
Repercussions of overturning Roe v. Wade for women across systems and beyond borders.
Reprod Health. 2022 Aug 24;19(1):184. doi: 10.1186/s12978-022-01490-y.
10
Fetal Mortality: United States, 2020.
Natl Vital Stat Rep. 2022 Aug;71(4):1-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验