State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.
JAMA Netw Open. 2023 May 1;6(5):e2313220. doi: 10.1001/jamanetworkopen.2023.13220.
The neural retina is considered a unique window to systemic health, but its biological link with systemic health remains unknown.
To investigate the independent associations of retinal ganglion cell-inner plexiform layer thickness (GCIPLT) metabolic profiles with rates of mortality and morbidity of common diseases.
DESIGN, SETTING, AND PARTICIPANTS: This cohort study evaluated UK Biobank participants enrolled between 2006 and 2010, and prospectively followed them up for multidisease diagnosis and mortality. Additional participants from the Guangzhou Diabetes Eye Study (GDES) underwent optical coherence tomography scanning and metabolomic profiling and were included for validation.
Systematic analysis of circulating plasma metabolites to identify GCIPLT metabolic profiles; prospective associations of these profiles with mortality and morbidity of 6 common diseases with their incremental discriminative value and clinical utility.
Among 93 838 community-based participants (51 182 [54.5%] women), the mean (SD) age was 56.7 (8.1) years and mean (SD) follow-up was 12.3 (0.8) years. Of 249 metabolic metrics, 37 were independently associated with GCIPLT, including 8 positive and 29 negative associations, and most were associated with the rates of future mortality and common diseases. These metabolic profiles significantly improved the models for discriminating type 2 diabetes over clinical indicators (C statistic: 0.862; 95% CI, 0.852-0.872 vs clinical indicators only, 0.803; 95% CI, 0.792-0.814; P < .001), myocardial infarction (0.792; 95% CI, 0.775-0.808 vs 0.768; 95% CI, 0.751-0.786; P < .001), heart failure (0.803; 95% CI, 0.786-0.820 vs 0.790; 95% CI, 0.773-0.807; P < .001), stroke (0.739; 95% CI, 0.714-0.764 vs 0.719; 95% CI, 0.693-0.745; P < .001), all-cause mortality (0.747; 95% CI, 0.734-0.760 vs 0.724; 95% CI, 0.711-0.738; P < .001), and cardiovascular disease mortality (0.790; 95% CI, 0.767-0.812 vs 0.763; 95% CI, 0.739-0.788; P < .001). Additionally, the potential of GCIPLT metabolic profiles for risk stratification of cardiovascular diseases were further confirmed in the GDES cohort using a different metabolomic approach.
In this prospective study of multinational participants, GCIPLT-associated metabolites demonstrated the potential to inform mortality and morbidity risks. Incorporating information on these profiles may facilitate individualized risk stratification for these health outcomes.
神经视网膜被认为是观察全身健康的独特窗口,但它与全身健康的生物学联系仍不清楚。
研究视网膜神经节细胞-内丛状层厚度(GCIPLT)代谢特征与常见疾病死亡率和发病率的独立关联。
设计、地点和参与者:本队列研究评估了 2006 年至 2010 年间参加英国生物库的参与者,并对他们进行了前瞻性随访,以确定多种疾病的诊断和死亡率。来自广州糖尿病眼病研究(GDES)的额外参与者接受了光学相干断层扫描和代谢组学分析,并被纳入验证。
系统性分析循环血浆代谢物,以确定 GCIPLT 代谢特征;这些特征与 6 种常见疾病的死亡率和发病率的前瞻性关联,以及它们的增量判别价值和临床实用性。
在 93838 名社区参与者(51182 [54.5%] 名女性)中,平均(SD)年龄为 56.7(8.1)岁,平均(SD)随访时间为 12.3(0.8)年。在 249 种代谢指标中,有 37 种与 GCIPLT 独立相关,包括 8 种正相关和 29 种负相关,其中大多数与未来死亡率和常见疾病的发生率有关。这些代谢特征显著提高了 2 型糖尿病的模型区分能力,优于临床指标(C 统计量:0.862;95%CI,0.852-0.872 与仅临床指标相比,0.803;95%CI,0.792-0.814;P<0.001)、心肌梗死(0.792;95%CI,0.775-0.808 与 0.768;95%CI,0.751-0.786;P<0.001)、心力衰竭(0.803;95%CI,0.786-0.820 与 0.790;95%CI,0.773-0.807;P<0.001)、中风(0.739;95%CI,0.714-0.764 与 0.719;95%CI,0.693-0.745;P<0.001)、全因死亡率(0.747;95%CI,0.734-0.760 与 0.724;95%CI,0.711-0.738;P<0.001)和心血管疾病死亡率(0.790;95%CI,0.767-0.812 与 0.763;95%CI,0.739-0.788;P<0.001)。此外,在使用不同代谢组学方法的 GDES 队列中,进一步证实了 GCIPLT 代谢特征在心血管疾病风险分层中的潜力。
在这项对多国参与者的前瞻性研究中,与 GCIPLT 相关的代谢物表明有潜力提供死亡率和发病率风险信息。纳入这些特征的信息可能有助于对这些健康结果进行个体化风险分层。