Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA.
Biostatistics, McGill University, Montreal, QC, Canada.
Lifetime Data Anal. 2024 Jan;30(1):181-212. doi: 10.1007/s10985-023-09605-8. Epub 2023 Sep 2.
To achieve the goal of providing the best possible care to each individual under their care, physicians need to customize treatments for individuals with the same health state, especially when treating diseases that can progress further and require additional treatments, such as cancer. Making decisions at multiple stages as a disease progresses can be formalized as a dynamic treatment regime (DTR). Most of the existing optimization approaches for estimating dynamic treatment regimes including the popular method of Q-learning were developed in a frequentist context. Recently, a general Bayesian machine learning framework that facilitates using Bayesian regression modeling to optimize DTRs has been proposed. In this article, we adapt this approach to censored outcomes using Bayesian additive regression trees (BART) for each stage under the accelerated failure time modeling framework, along with simulation studies and a real data example that compare the proposed approach with Q-learning. We also develop an R wrapper function that utilizes a standard BART survival model to optimize DTRs for censored outcomes. The wrapper function can easily be extended to accommodate any type of Bayesian machine learning model.
为了实现为每个接受治疗的个体提供最佳护理的目标,医生需要针对具有相同健康状况的个体定制治疗方案,特别是在治疗可能进一步发展并需要额外治疗的疾病时,例如癌症。随着疾病的进展,在多个阶段做出决策可以形式化为动态治疗方案 (DTR)。大多数现有的用于估计动态治疗方案的优化方法,包括流行的 Q 学习方法,都是在频率主义背景下开发的。最近,提出了一种通用的贝叶斯机器学习框架,该框架便于使用贝叶斯回归建模来优化 DTR。在本文中,我们使用加速失效时间模型框架下的每个阶段的贝叶斯加性回归树 (BART),针对删失结局对该方法进行了改编,同时进行了模拟研究和真实数据示例,将提出的方法与 Q 学习进行了比较。我们还开发了一个 R 包装函数,该函数利用标准的 BART 生存模型来优化针对删失结局的 DTR。该包装函数可以轻松扩展以适应任何类型的贝叶斯机器学习模型。