Ikarashi Y, Okada M, Maruyama Y
Brain Res. 1986 May 14;373(1-2):182-8. doi: 10.1016/0006-8993(86)90329-x.
A novel microwave instrument has recently been designed by New Japan Radio Co. Ltd., to provide more homogeneous distribution of the rapidly deposited heat in the rodent brain. Being the first commercial unit which concentrates the maximum magnetic field component of irradiation, rather than the usual electric field, it provides complete enzymatic inactivation in a typical rat brain when a power of 9 kW (90% of maximum) is applied for 0.80 s at the standard operating frequency of 2450 MHz. Tissue structural integrity was investigated in animals sacrificed by this approach or by the usual decapitation to see if any tissue disruption or pressure-induced spreading, a major problem with other microwave devices, might also be of concern for this new unit. Histological examination of tissue samples employed both light and electron microscopy. Using Luxol Fast Blue in the light microscopy, the microwave irradiated tissues exhibited a decreased affinity for the staining agent, an appearance of slight vacuoles, and the disappearance of fine fibrils in the parenchyma. However, the interfacial areas between distinct brain regions remained well preserved. Electron microscopic observation indicated that microwave irradiated tissue caused protein denaturation accompanied by the aggregation of nuclear chromatin, the disappearance of Nissl bodies, ribosomes and neurofilaments, and noticeably irregular myelin sheaths. However, the essential structure of nerve cell membranes and synaptic membranes were maintained, and synaptic vesicles were clearly defined. These results indicated that the rapid heating of brain tissue with maximal magnetic field concentration of the irradiation does not result in significant tissue disruption, pressure-induced spreading or cell breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)