BIH Center for Regenerative Therapies, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
Berlin Center for Advanced Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany.
Blood Adv. 2023 Aug 8;7(15):4124-4134. doi: 10.1182/bloodadvances.2022009397.
Graft-versus-host disease (GVHD) is a major risk of the administration of allogeneic chimeric antigen receptor (CAR)-redirected T cells to patients who are HLA unmatched. Gene editing can be used to disrupt potentially alloreactive T-cell receptors (TCRs) in CAR T cells and reduce the risk of GVHD. Despite the high knockout rates achieved with the optimized methods, a subsequent purification step is necessary to obtain a safe allogeneic product. To date, magnetic cell separation (MACS) has been the gold standard for purifying TCRα/β- CAR T cells, but product purity can still be insufficient to prevent GVHD. We developed a novel and highly efficient approach to eliminate residual TCR/CD3+ T cells after TCRα constant (TRAC) gene editing by adding a genetically modified CD3-specific CAR NK-92 cell line during ex vivo expansion. Two consecutive cocultures with irradiated, short-lived, CAR NK-92 cells allowed for the production of TCR- CAR T cells with <0.01% TCR+ T cells, marking a 45-fold reduction of TCR+ cells compared with MACS purification. Through an NK-92 cell-mediated feeder effect and circumventing MACS-associated cell loss, our approach increased the total TCR- CAR T-cell yield approximately threefold while retaining cytotoxic activity and a favorable T-cell phenotype. Scaling in a semiclosed G-Rex bioreactor device provides a proof-of-principle for large-batch manufacturing, allowing for an improved cost-per-dose ratio. Overall, this cell-mediated purification method has the potential to advance the production process of safe off-the-shelf CAR T cells for clinical applications.
移植物抗宿主病 (GVHD) 是异体嵌合抗原受体 (CAR) 定向 T 细胞输注给 HLA 不匹配患者的主要风险。基因编辑可用于破坏 CAR T 细胞中潜在的同种反应性 T 细胞受体 (TCR),从而降低 GVHD 的风险。尽管通过优化方法实现了高敲除率,但仍需要后续的纯化步骤来获得安全的同种异体产品。迄今为止,磁细胞分离 (MACS) 一直是纯化 TCRα/β-CAR T 细胞的金标准,但产品纯度仍可能不足以预防 GVHD。我们开发了一种新颖且高效的方法,通过在体外扩增过程中添加经过基因修饰的 CD3 特异性 CAR NK-92 细胞系,在 TCRα 恒定 (TRAC) 基因编辑后消除残留的 TCR/CD3+ T 细胞。连续两次与照射的、短暂存活的 CAR NK-92 细胞共培养,可产生 TCR- CAR T 细胞,其中 TCR+ T 细胞<0.01%,与 MACS 纯化相比,TCR+细胞减少了 45 倍。通过 NK-92 细胞介导的饲养作用和绕过 MACS 相关的细胞损失,我们的方法使 TCR- CAR T 细胞的总产量增加了约三倍,同时保持了细胞毒性活性和有利的 T 细胞表型。在半封闭 G-Rex 生物反应器设备中放大,为大规模生产提供了原理验证,从而提高了每剂量的成本效益比。总体而言,这种细胞介导的纯化方法有可能推进安全即用型 CAR T 细胞的生产工艺,用于临床应用。