Suppr超能文献

ITACA:基于脑机接口的神经反馈的开源框架。

ITACA: An open-source framework for Neurofeedback based on Brain-Computer Interfaces.

机构信息

Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.

Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, Spain.

出版信息

Comput Biol Med. 2023 Jun;160:107011. doi: 10.1016/j.compbiomed.2023.107011. Epub 2023 May 9.

Abstract

BACKGROUND AND OBJECTIVE

Neurofeedback (NF) is a paradigm that allows users to self-modulate patterns of brain activity. It is implemented with a closed-loop brain-computer interface (BCI) system that analyzes the user's brain activity in real-time and provides continuous feedback. This paradigm is of great interest due to its potential as a non-pharmacological and non-invasive alternative to treat non-degenerative brain disorders. Nevertheless, currently available NF frameworks have several limitations, such as the lack of a wide variety of real-time analysis metrics or overly simple training scenarios that may negatively affect user performance. To overcome these limitations, this work proposes ITACA: a novel open-source framework for the design, implementation and evaluation of NF training paradigms.

METHODS

ITACA is designed to be easy-to-use, flexible and attractive. Specifically, ITACA includes three different gamified training scenarios with a choice of five brain activity metrics as real-time feedback. Among them, novel metrics based on functional connectivity and network theory stand out. It is complemented with five different computerized versions of widespread cognitive assessment tests. To validate the proposed framework, a computational efficiency analysis and an NF training protocol focused on frontal-medial theta modulation were conducted.

RESULTS

Efficiency analysis proved that all implemented metrics allow an optimal feedback update rate for conducting NF sessions. Furthermore, conducted NF protocol yielded results that support the use of ITACA in NF research studies.

CONCLUSIONS

ITACA implements a wide variety of features for designing, conducting and evaluating NF studies with the goal of helping researchers expand the current state-of-the-art in NF training.

摘要

背景与目的

神经反馈(NF)是一种允许用户自我调节大脑活动模式的范例。它通过实时分析用户大脑活动并提供持续反馈的闭环脑机接口(BCI)系统来实现。由于其作为非药物和非侵入性替代方案治疗非退行性脑疾病的潜力,该范例引起了极大的兴趣。然而,目前可用的 NF 框架存在几个限制,例如缺乏各种实时分析指标或过于简单的训练场景,这可能会对用户的表现产生负面影响。为了克服这些限制,本工作提出了 ITACA:一种用于设计、实施和评估 NF 训练范例的新型开源框架。

方法

ITACA 旨在易于使用、灵活且具有吸引力。具体而言,ITACA 包括三个具有五种大脑活动指标作为实时反馈的不同游戏化训练场景。其中,基于功能连接和网络理论的新型指标引人注目。它还补充了五种不同的计算机化广泛认知评估测试版本。为了验证所提出的框架,进行了计算效率分析和专注于额-内侧θ调制的 NF 训练协议。

结果

效率分析证明,所有实现的指标都允许进行 NF 会话的最佳反馈更新率。此外,进行的 NF 协议产生的结果支持在 NF 研究中使用 ITACA。

结论

ITACA 实现了广泛的功能,用于设计、进行和评估 NF 研究,旨在帮助研究人员扩展 NF 训练的当前最新技术状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验