School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
School of Engineering and Materials Science, Queen Mary University of London, London E14NS, UK.
Biomater Adv. 2023 Aug;151:213471. doi: 10.1016/j.bioadv.2023.213471. Epub 2023 May 12.
The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility.
生物医用材料的生物相容性对其适用性和功能至关重要。然而,使用传统的表面处理技术来提高生物相容性而对表面进行改性具有挑战性。我们采用矿化弹性蛋白样重组体(ELR)自组装平台在 Zr-16Nb-xTi(x=4、16wt%)合金表面进行矿化处理,从而改变表面形貌和生物活性,同时提高材料的生物相容性。我们通过调节交联剂的比例来调节纳米晶体的组织水平。纳米压痕试验表明,矿化结构在杨氏模量和硬度方面具有不均匀性,中心区域的值较高(5.626±0.109GPa 和 0.264±0.022GPa),而边缘的值较低(4.282±0.327GPa 和 0.143±0.023GPa)。划痕试验结果表明,矿化涂层与基底之间具有较高的结合强度(2.668±0.117N)。与未经处理的合金相比,矿化 Zr-16Nb-xTi(x=4、16wt%)合金的存活率更高,5 天后细胞存活率超过 100%,7 天后碱性磷酸酶活性较高。细胞增殖试验表明,MG63 细胞在矿化表面上的生长速度比在未处理表面上的生长速度更快。扫描电子显微镜成像证实,细胞在矿化表面上很好地粘附和扩展。此外,血液相容性试验结果表明所有矿化样品均无溶血。我们的结果表明,采用 ELR 矿化平台来提高合金的生物相容性是可行的。