Suppr超能文献

基于机器学习的痴呆行为和心理症状发生预测模型:模型开发和验证。

Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation.

机构信息

Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Department of Nursing, Yong-In Arts and Science University, Gyeonggi-do, Korea.

出版信息

Sci Rep. 2023 May 18;13(1):8073. doi: 10.1038/s41598-023-35194-5.

Abstract

The behavioral and psychological symptoms of dementia (BPSD) are challenging aspects of dementia care. This study used machine learning models to predict the occurrence of BPSD among community-dwelling older adults with dementia. We included 187 older adults with dementia for model training and 35 older adults with dementia for external validation. Demographic and health data and premorbid personality traits were examined at the baseline, and actigraphy was utilized to monitor sleep and activity levels. A symptom diary tracked caregiver-perceived symptom triggers and the daily occurrence of 12 BPSD classified into seven subsyndromes. Several prediction models were also employed, including logistic regression, random forest, gradient boosting machine, and support vector machine. The random forest models revealed the highest area under the receiver operating characteristic curve (AUC) values for hyperactivity, euphoria/elation, and appetite and eating disorders; the gradient boosting machine models for psychotic and affective symptoms; and the support vector machine model showed the highest AUC. The gradient boosting machine model achieved the best performance in terms of average AUC scores across the seven subsyndromes. Caregiver-perceived triggers demonstrated higher feature importance values across the seven subsyndromes than other features. Our findings demonstrate the possibility of predicting BPSD using a machine learning approach.

摘要

痴呆的行为和心理症状(BPSD)是痴呆护理具有挑战性的方面。本研究使用机器学习模型来预测社区居住的痴呆老年患者发生 BPSD 的情况。我们纳入了 187 名患有痴呆症的老年人进行模型训练,纳入了 35 名患有痴呆症的老年人进行外部验证。在基线时检查了人口统计学和健康数据以及发病前的人格特质,并利用活动记录仪监测睡眠和活动水平。症状日记记录了照顾者感知到的症状触发因素以及 12 种 BPSD 的日常发生情况,这些症状被分为七个亚综合征。还使用了几种预测模型,包括逻辑回归、随机森林、梯度提升机和支持向量机。随机森林模型在多动、欣快/兴奋和食欲和进食障碍方面显示出最高的受试者工作特征曲线(ROC)下面积(AUC)值;梯度提升机模型在精神病和情感症状方面;支持向量机模型显示了最高的 AUC。在七个亚综合征的平均 AUC 评分方面,梯度提升机模型的性能最佳。照顾者感知到的触发因素在七个亚综合征中的特征重要性值均高于其他特征。我们的研究结果表明,使用机器学习方法预测 BPSD 是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89f/10195861/683b6be53109/41598_2023_35194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验