Kwon Chan-Young, Lee Boram, Kim Sung-Hee, Jeong Seok Chan, Kim Jong-Woo
Department of Oriental Neuropsychiatry, College of Korean Medicine, Dong-Eui University, Busan, Republic of Korea.
KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
J Pharmacopuncture. 2024 Dec 31;27(4):358-366. doi: 10.3831/KPI.2024.27.4.358.
To develop and compare machine learning models to classify individuals vulnerable to Hwa-byung (HB) using an existing HB personality scale and to evaluate the efficacy of these models in predicting HB vulnerability.
We analyzed data from 500 Korean adults (aged 19-44) using HB personality and symptom scales. We used various machine learning techniques, including the random forest classifier (RFC), XGBoost classifier, logistic regression, and their ensemble method (RFC-XGC-LR). The models were developed using recursive feature elimination with cross-validation for feature selection and evaluated using multiple performance metrics, including accuracy, precision, recall, specificity, and area under the receiver operating characteristic curve (AUROC).
The 16 items on the HB personality scale were identified as optimal features to predict high HB symptom scores requiring further clinical evaluation. The ensemble model slightly outperformed the other models, with an accuracy of 0.80 and an AUROC of 0.86, in the test set. Notably, item 16 ("") of the HB personality scale showed the greatest importance in predicting HB vulnerability across all models. Although all models showed consistent performance across training, validation, and test sets, the RFC model exhibited signs of slight overfitting, with a higher AUROC of 0.97 in the training dataset compared to 0.85 in the validation and 0.86 in the test datasets.
Machine learning models, particularly the ensemble method, show capabilities promising for screening individuals with high HB symptom scores based on personality traits, potentially facilitating early referral for clinical evaluation. These models can improve the efficiency and accuracy of the HB risk assessment in clinical settings, potentially aiding early intervention and prevention strategies.
利用现有的火病(HB)人格量表开发并比较用于对易患火病的个体进行分类的机器学习模型,并评估这些模型在预测火病易感性方面的效果。
我们使用火病的人格和症状量表分析了500名韩国成年人(年龄在19 - 44岁之间)的数据。我们采用了各种机器学习技术,包括随机森林分类器(RFC)、XGBoost分类器、逻辑回归及其集成方法(RFC - XGC - LR)。这些模型通过递归特征消除和交叉验证进行特征选择来开发,并使用多种性能指标进行评估,包括准确率、精确率、召回率、特异性以及受试者工作特征曲线下面积(AUROC)。
火病人格量表上的16个项目被确定为预测需要进一步临床评估的高火病症状评分的最佳特征。在测试集中,集成模型略优于其他模型,准确率为0.80,AUROC为0.86。值得注意的是,火病人格量表的第16项(“”)在所有模型中预测火病易感性方面显示出最大的重要性。尽管所有模型在训练集、验证集和测试集上表现一致,但RFC模型表现出轻微的过拟合迹象,训练数据集中的AUROC为0.97,而验证集中为0.85,测试数据集中为0.86。
机器学习模型,特别是集成方法,显示出基于人格特质筛选高火病症状评分个体的潜力,有望促进早期转介进行临床评估。这些模型可以提高临床环境中火病风险评估的效率和准确性,可能有助于早期干预和预防策略。