Suppr超能文献

基于因果森林的异质治疗效果的可推广性,应用于两项强化血糖控制的随机临床试验。

Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control.

机构信息

Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO; Division of Hospital Medicine, University of Colorado School of Medicine, Aurora, CO; Colorado Cardiovascular Outcomes Research Consortium, Aurora, CO.

Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO.

出版信息

Ann Epidemiol. 2022 Jan;65:101-108. doi: 10.1016/j.annepidem.2021.07.003. Epub 2021 Jul 17.

Abstract

Purpose Machine learning is an attractive tool for identifying heterogeneous treatment effects (HTE) of interventions but generalizability of machine learning derived HTE remains unclear. We examined generalizability of HTE detected using causal forests in two similarly designed randomized trials in type II diabetes patients. Methods We evaluated published HTE of intensive versus standard glycemic control on all-cause mortality from the Action to Control Cardiovascular Risk in Diabetes study (ACCORD) in a second trial, the Veterans Affairs Diabetes Trial (VADT). We then applied causal forests to VADT, ACCORD, and pooled data from both studies and compared variable importance and subgroup effects across samples. Results HTE in ACCORD did not replicate in similar subgroups in VADT, but variable importance was correlated between VADT and ACCORD (Kendall's tau-b 0.75). Applying causal forests to pooled individual-level data yielded seven subgroups with similar HTE across both studies, ranging from risk difference of all-cause mortality of -3.9% (95% CI -7.0, -0.8) to 4.7% (95% CI 1.8, 7.5). Conclusions Machine learning detection of HTE subgroups from randomized trials may not generalize across study samples even when variable importance is correlated. Pooling individual-level data may overcome differences in study populations and/or differences in interventions that limit HTE generalizability.

摘要

目的

机器学习是一种有吸引力的工具,可用于识别干预措施的异质治疗效果(HTE),但机器学习衍生的 HTE 的可推广性尚不清楚。我们在两项设计类似的 2 型糖尿病患者随机试验中检查了因果森林检测到的 HTE 的可推广性。

方法

我们评估了 ACTION TO CONTROL CARDIOVASCULAR RISK IN DIABETES 研究(ACCORD)中强化与标准血糖控制对全因死亡率的 HTE 在第二项试验——退伍军人事务部糖尿病试验(VADT)中的重复性。然后,我们将因果森林应用于 VADT、ACCORD 以及两项研究的汇总数据,并比较了样本间的变量重要性和亚组效应。

结果

ACCORD 中的 HTE 在 VADT 中类似的亚组中没有复制,但 VADT 和 ACCORD 之间的变量重要性呈正相关(Kendall 的 tau-b 为 0.75)。将因果森林应用于汇总的个体水平数据,在两项研究中产生了七个具有相似 HTE 的亚组,全因死亡率的风险差异范围从-3.9%(95%CI-7.0,-0.8)到 4.7%(95%CI1.8,7.5)。

结论

即使变量重要性相关,从随机试验中机器学习检测到的 HTE 亚组也可能无法推广到研究样本。汇总个体水平数据可能会克服研究人群和/或干预措施的差异,这些差异限制了 HTE 的可推广性。

相似文献

4
Intensive glycemic control and cardiovascular disease: an update.强化血糖控制与心血管疾病:最新进展。
Nat Rev Cardiol. 2010 Jul;7(7):369-75. doi: 10.1038/nrcardio.2010.35. Epub 2010 Apr 20.

引用本文的文献

本文引用的文献

5
Metalearners for estimating heterogeneous treatment effects using machine learning.使用机器学习估计异质处理效应的元学习器。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.
7
The Science of Prognosis in Psychiatry: A Review.精神病学预后的科学:综述。
JAMA Psychiatry. 2018 Dec 1;75(12):1289-1297. doi: 10.1001/jamapsychiatry.2018.2530.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验