Suppr超能文献

透射电子显微镜揭示的热解驱动氧化钒纳米结构生长:对电池应用的启示

Thermolysis-Driven Growth of Vanadium Oxide Nanostructures Revealed by Transmission Electron Microscopy: Implications for Battery Applications.

作者信息

Gavhane Dnyaneshwar S, Sontakke Atul D, van Huis Marijn A

机构信息

Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands.

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands.

出版信息

ACS Appl Nano Mater. 2023 May 3;6(9):7280-7289. doi: 10.1021/acsanm.3c00397. eCollection 2023 May 12.

Abstract

Understanding the growth modes of 2D transition-metal oxides through direct observation is of vital importance to tailor these materials to desired structures. Here, we demonstrate thermolysis-driven growth of 2D VO nanostructures via transmission electron microscopy (TEM). Various growth stages in the formation of 2D VO nanostructures through thermal decomposition of a single solid-state NHVO precursor are unveiled during the TEM heating. Growth of orthorhombic VO 2D nanosheets and 1D nanobelts is observed in real time. The associated temperature ranges in thermolysis-driven growth of VO nanostructures are optimized through and heating. Also, the phase transformation of VO to VO was revealed in real time by TEM heating. The thermolysis results were reproduced using heating, which offers opportunities for upscaling the growth of vanadium oxide-based materials. Our findings offer effective, general, and simple pathways to produce versatile 2D VO nanostructures for a range of battery applications.

摘要

通过直接观察了解二维过渡金属氧化物的生长模式对于将这些材料定制为所需结构至关重要。在这里,我们通过透射电子显微镜(TEM)展示了热解驱动的二维VO纳米结构的生长。在TEM加热过程中,揭示了通过单一固态NHVO前驱体的热分解形成二维VO纳米结构的各个生长阶段。实时观察到正交VO二维纳米片和一维纳米带的生长。通过 和加热优化了VO纳米结构热解驱动生长的相关温度范围。此外,通过TEM加热实时揭示了VO向VO的相变。使用 加热再现了热解结果,这为扩大基于氧化钒材料的生长提供了机会。我们的发现为生产用于一系列电池应用的多功能二维VO纳米结构提供了有效、通用和简单的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c235/10186331/0752a737f87e/an3c00397_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验