Slater Jeffrey W, Neugebauer Monica E, McBride Molly J, Sil Debangsu, Lin Chi-Yun, Katch Bryce J, Boal Amie K, Chang Michelle C Y, Silakov Alexey, Krebs Carsten, Bollinger J Martin
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
bioRxiv. 2023 May 2:2023.05.02.539147. doi: 10.1101/2023.05.02.539147.
An aliphatic halogenase requires four substrates: 2-oxoglutarate (2OG), halide (Cl or Br ), the halogenation target ("prime substrate"), and dioxygen. In well-studied cases, the three non-gaseous substrates must bind to activate the enzyme's Fe(II) cofactor for efficient capture of O . Halide, 2OG, and (lastly) O all coordinate directly to the cofactor to initiate its conversion to a -halo-oxo-iron(IV) (haloferryl) complex, which abstracts hydrogen (H•) from the non-coordinating prime substrate to enable radicaloid carbon-halogen coupling. We dissected the kinetic pathway and thermodynamic linkage in binding of the first three substrates of the l -lysine 4-chlorinase, BesD. After 2OG adds, subsequent coordination of the halide to the cofactor and binding of cationic l -Lys near the cofactor are associated with strong heterotropic cooperativity. Progression to the haloferryl intermediate upon addition of O does not trap the substrates in the active site and, in fact, markedly diminishes cooperativity between halide and l -Lys. The surprising lability of the BesD•[Fe(IV)=O]•Cl•succinate• l -Lys complex engenders pathways for decay of the haloferryl intermediate that do not result in l -Lys chlorination, especially at low chloride concentrations; one identified pathway involves oxidation of glycerol. The mechanistic data imply that (i) BesD may have evolved from a hydroxylase ancestor either relatively recently or under weak selective pressure for efficient chlorination and (ii) that acquisition of its activity may have involved the emergence of linkage between l -Lys binding and chloride coordination following loss of the anionic protein-carboxylate iron ligand present in extant hydroxylases.
2-氧代戊二酸(2OG)、卤化物(Cl 或 Br )、卤化作用靶点(“主要底物”)和双原子氧。在深入研究的案例中,三种非气态底物必须结合以激活酶的Fe(II)辅因子,从而有效捕获O 。卤化物、2OG以及(最后)O 都直接与辅因子配位,以启动其向α-卤代-氧代-铁(IV)(卤代铁)配合物的转化,该配合物从非配位的主要底物中提取氢(H•),以实现类自由基碳-卤偶联。我们剖析了L-赖氨酸4-氯化酶BesD的前三种底物结合过程中的动力学途径和热力学联系。2OG添加后,卤化物随后与辅因子的配位以及阳离子L-赖氨酸在辅因子附近的结合与强烈的异源协同作用相关。添加O 后向卤代铁中间体的转变不会将底物捕获在活性位点,实际上,会显著降低卤化物和L-赖氨酸之间的协同作用。BesD•[Fe(IV)=O]•Cl•琥珀酸酯•L-赖氨酸配合物惊人的不稳定性产生了卤代铁中间体的衰变途径,这些途径不会导致L-赖氨酸氯化,尤其是在低氯浓度下;一条已确定的途径涉及甘油的氧化。机理数据表明:(i)BesD可能是在相对较近的时间从羟化酶祖先进化而来,或者是在有效氯化的弱选择压力下进化而来;(ii)其活性的获得可能涉及在现存羟化酶中存在的阴离子蛋白质-羧酸盐铁配体丧失后,L-赖氨酸结合与氯离子配位之间联系的出现。