Suppr超能文献

铁(II)依赖型和 2-(氧代)戊二酸依赖型双加氧酶原型 TauD 中的假过氧物结构。

Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.

出版信息

Biochemistry. 2019 Oct 15;58(41):4218-4223. doi: 10.1021/acs.biochem.9b00598. Epub 2019 Oct 2.

Abstract

Iron(II)- and 2-(oxo)-glutarate-dependent (Fe/2OG) oxygenases catalyze a diverse array of oxidation reactions via a common iron(IV)-oxo (ferryl) intermediate. Although the intermediate has been characterized spectroscopically, its short lifetime has precluded crystallograhic characterization. In solution, the ferryl was first observed directly in the archetypal Fe/2OG hydroxylase, taurine:2OG dioxygenase (TauD). Here, we substitute the iron cofactor of TauD with the stable vanadium(IV)-oxo (vanadyl) ion to obtain crystal structures mimicking the key ferryl complex. Intriguingly, whereas the structure of the TauD·(V-oxo)·succinate·taurine complex exhibits the expected orientation of the V≡O bond- to the His255 ligand and toward the C-H bond to be cleaved, in what has been termed the in-line configuration-the TauD·(V-oxo) binary complex is best modeled with its oxo ligand to Asp101. This off-line-like configuration is similar to one recently posited as a means to avoid hydroxylation in Fe/2OG enzymes that direct other outcomes, though neither has been visualized in an Fe/2OG structure to date. Whereas an off-line ( to the proximal His) or off-line-like ( to the carboxylate ligand) ferryl is unlikely to be important in the hydroxylation reaction of TauD, the observation that the ferryl may deviate from an in-line orientation in the absence of the primary substrate may explain the enzyme's mysterious self-hydroxylation behavior, should the oxo ligand lie to His99. This finding reinforces the potential for analogous functional off-line oxo configurations in halogenases, desaturases, and/or cyclases.

摘要

铁(II)-和 2-(氧代)-戊二酸依赖性(Fe/2OG)加氧酶通过共同的铁(IV)-氧(双氧)中间物催化各种氧化反应。尽管该中间物已经通过光谱学进行了表征,但由于其短寿命,仍无法进行晶体学表征。在溶液中,双氧首先在典型的 Fe/2OG 羟化酶,牛磺酸:2OG 双加氧酶(TauD)中直接观察到。在这里,我们用稳定的钒(IV)-氧(钒酰)离子替代 TauD 的铁辅因子,以获得模拟关键双氧络合物的晶体结构。有趣的是,虽然 TauD·(V-氧)·琥珀酸·牛磺酸复合物的结构表现出预期的 V≡O 键的取向-与 His255 配体和待裂解的 C-H 键,称为直线构型-但 TauD·(V-氧)二元复合物最好用其氧配体与 Asp101 建模。这种离线样的构象类似于最近提出的一种避免在 Fe/2OG 酶中发生羟化的方法,这些酶可以引导其他结果,尽管迄今为止尚未在 Fe/2OG 结构中观察到这两种方法。尽管离线(至近端 His)或离线样(至羧酸盐配体)的双氧不太可能在 TauD 的羟化反应中很重要,但观察到在没有主要底物的情况下,双氧可能偏离直线取向,这可能解释了酶的神秘自羟化行为,如果氧配体位于 His99 附近。这一发现增强了卤化酶、去饱和酶和/或环化酶中类似功能的离线氧配体构型的潜力。

相似文献

1
Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.
Biochemistry. 2019 Oct 15;58(41):4218-4223. doi: 10.1021/acs.biochem.9b00598. Epub 2019 Oct 2.
2
Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.
Inorg Chem. 2017 Nov 6;56(21):13382-13389. doi: 10.1021/acs.inorgchem.7b02113. Epub 2017 Sep 29.
8
Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
J Am Chem Soc. 2017 Oct 4;139(39):13830-13836. doi: 10.1021/jacs.7b07374. Epub 2017 Sep 20.
10
The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
FEBS J. 2012 Mar;279(5):816-31. doi: 10.1111/j.1742-4658.2012.08473.x. Epub 2012 Jan 24.

引用本文的文献

1
Tracing the stepwise Darwinian evolution of a plant halogenase.
Sci Adv. 2025 Aug 15;11(33):eadv6898. doi: 10.1126/sciadv.adv6898. Epub 2025 Aug 13.
2
5
Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code.
ACS Catal. 2024 Jul 20;14(15):11584-11590. doi: 10.1021/acscatal.4c02365. eCollection 2024 Aug 2.
7
Synergistic Binding of the Halide and Cationic Prime Substrate of l-Lysine 4-Chlorinase, BesD, in Both Ferrous and Ferryl States.
Biochemistry. 2023 Aug 15;62(16):2480-2491. doi: 10.1021/acs.biochem.3c00248. Epub 2023 Aug 5.
9
Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean.
ISME J. 2023 Mar;17(3):393-405. doi: 10.1038/s41396-022-01353-1. Epub 2023 Jan 2.
10
H-HYSCORE Reveals Structural Details at the Fe(II) Active Site of Taurine:2-Oxoglutarate Dioxygenase.
Appl Magn Reson. 2021 Aug;52(8):971-994. doi: 10.1007/s00723-020-01288-w. Epub 2020 Oct 28.

本文引用的文献

1
Molecular basis for enantioselective herbicide degradation imparted by aryloxyalkanoate dioxygenases in transgenic plants.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13299-13304. doi: 10.1073/pnas.1900711116. Epub 2019 Jun 17.
3
Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.
Inorg Chem. 2017 Nov 6;56(21):13382-13389. doi: 10.1021/acs.inorgchem.7b02113. Epub 2017 Sep 29.
4
Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
J Am Chem Soc. 2017 Oct 4;139(39):13830-13836. doi: 10.1021/jacs.7b07374. Epub 2017 Sep 20.
5
Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.
Nat Chem Biol. 2016 Aug;12(8):636-40. doi: 10.1038/nchembio.2112. Epub 2016 Jun 27.
6
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage?
Q Rev Biophys. 2015 Nov;48(4):411-20. doi: 10.1017/S0033583515000062.
8
Highly selective but multifunctional oxygenases in secondary metabolism.
Acc Chem Res. 2014 Oct 21;47(10):3148-61. doi: 10.1021/ar500242c. Epub 2014 Sep 24.
9
Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2.
Nature. 2013 Jul 18;499(7458):320-3. doi: 10.1038/nature12304.
10
Hydrogen-bonding effects on the reactivity of [X-Fe(III)-O-Fe(IV)═O] (X = OH, F) complexes toward C-H bond cleavage.
Inorg Chem. 2013 Apr 1;52(7):3976-84. doi: 10.1021/ic3027896. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验