Walker Sydney R, Peña-Garcia Marco, Devineni Anita V
Department of Biology, Emory University, Atlanta, GA, 30322, USA.
Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
Sci Rep. 2025 Feb 12;15(1):5278. doi: 10.1038/s41598-025-89088-9.
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ), the primary taste region of the fly brain. We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We analyze interconnections within and between taste pathways, characterize modality-dependent differences in taste neuron properties, identify other types of inputs onto taste pathways, and use computational simulations to relate neuronal connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
我们的味觉对于调节食物摄入至关重要。果蝇是研究味觉处理机制的一个高度易处理的模型,但除感觉神经元之外的味觉回路在很大程度上尚未明确。在这里,我们使用全脑连接组来研究果蝇味觉回路的组织。我们追踪了来自检测不同味觉模式并投射到果蝇脑的主要味觉区域咽下神经节(SEZ)的四类感觉神经元的通路。我们发现,二级味觉神经元主要位于SEZ内,并且在很大程度上按味觉模式分离,而三级神经元在SEZ之外有更多投射,并且在不同模式之间有更多重叠。从SEZ发出的味觉投射支配与进食、嗅觉处理和学习相关的区域。我们分析了味觉通路内部和之间的互连,表征了味觉神经元特性中依赖模式的差异,识别了味觉通路上的其他类型输入,并使用计算模拟将神经元连接性与预测活动相关联。这些研究为果蝇味觉回路的结构提供了见解。