Suppr超能文献

连接组约束网络预测果蝇视觉系统中的神经活动。

Connectome-constrained networks predict neural activity across the fly visual system.

机构信息

Machine Learning in Science, Tübingen University, Tübingen, Germany.

Tübingen AI Center, Tübingen, Germany.

出版信息

Nature. 2024 Oct;634(8036):1132-1140. doi: 10.1038/s41586-024-07939-3. Epub 2024 Sep 11.

Abstract

We can now measure the connectivity of every neuron in a neural circuit, but we cannot measure other biological details, including the dynamical characteristics of each neuron. The degree to which measurements of connectivity alone can inform the understanding of neural computation is an open question. Here we show that with experimental measurements of only the connectivity of a biological neural network, we can predict the neural activity underlying a specified neural computation. We constructed a model neural network with the experimentally determined connectivity for 64 cell types in the motion pathways of the fruit fly optic lobe but with unknown parameters for the single-neuron and single-synapse properties. We then optimized the values of these unknown parameters using techniques from deep learning, to allow the model network to detect visual motion. Our mechanistic model makes detailed, experimentally testable predictions for each neuron in the connectome. We found that model predictions agreed with experimental measurements of neural activity across 26 studies. Our work demonstrates a strategy for generating detailed hypotheses about the mechanisms of neural circuit function from connectivity measurements. We show that this strategy is more likely to be successful when neurons are sparsely connected-a universally observed feature of biological neural networks across species and brain regions.

摘要

我们现在可以测量神经回路中每个神经元的连接性,但无法测量其他生物学细节,包括每个神经元的动态特性。仅通过测量连接性来理解神经计算的程度是一个悬而未决的问题。在这里,我们表明,仅通过对生物神经网络的连接性进行实验测量,我们就可以预测特定神经计算所对应的神经活动。我们构建了一个具有实验确定的 64 种细胞类型的运动通路的果蝇光脑模型神经网络,但单个神经元和单个突触的特性的参数是未知的。然后,我们使用深度学习技术来优化这些未知参数的值,以使模型网络能够检测视觉运动。我们的机械模型对连接组中的每个神经元都做出了详细的、可通过实验检验的预测。我们发现,模型预测与 26 项研究中的神经活动的实验测量结果吻合。我们的工作展示了一种从连接性测量中生成有关神经回路功能机制的详细假设的策略。我们表明,当神经元稀疏连接时(这是跨物种和脑区的生物神经网络的普遍特征),这种策略更有可能成功。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a5/11525180/b64d5bf19f85/41586_2024_7939_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验