Suppr超能文献

环境和社会经济协变量对中国手足口病风险的综合影响:时空异质观点。

Combined impacts of environmental and socioeconomic covariates on HFMD risk in China: A spatiotemporal heterogeneous perspective.

机构信息

Joint Division of Clinical Epidemiology, Affiliated Hospital of Nantong University, School of Public Health of Nantong University, Nantong, China.

Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China.

出版信息

PLoS Negl Trop Dis. 2023 May 19;17(5):e0011286. doi: 10.1371/journal.pntd.0011286. eCollection 2023 May.

Abstract

BACKGROUND

Understanding geospatial impacts of multi-sourced influencing factors on the epidemic of hand-foot-and-mouth disease (HFMD) is of great significance for formulating disease control policies tailored to regional-specific needs, yet the knowledge is very limited. We aim to identify and further quantify the spatiotemporal heterogeneous effects of environmental and socioeconomic factors on HFMD dynamics.

METHODS

We collected monthly province-level HFMD incidence and related environmental and socioeconomic data in China during 2009-2018. Hierarchical Bayesian models were constructed to investigate the spatiotemporal relationships between regional HFMD and various covariates: linear and nonlinear effects for environmental covariates, and linear effects for socioeconomic covariates.

RESULTS

The spatiotemporal distribution of HFMD cases was highly heterogeneous, indicated by the Lorenz curves and the corresponding Gini indices. The peak time (R2 = 0.65, P = 0.009), annual amplitude (R2 = 0.94, P<0.001), and semi-annual periodicity contribution (R2 = 0.88, P<0.001) displayed marked latitudinal gradients in Central China region. The most likely cluster areas for HFMD were located in south China (Guangdong, Guangxi, Hunan, Hainan) from April 2013 to October 2017. The Bayesian models achieved the best predictive performance (R2 = 0.87, P<0.001). We found significant nonlinear associations between monthly average temperature, relative humidity, normalized difference vegetation index and HFMD transmission. Besides, population density (RR = 1.261; 95%CI, 1.169-1.353), birth rate (RR = 1.058; 95%CI, 1.025-1.090), real GDP per capita (RR = 1.163; 95%CI, 1.033-1.310) and school vacation (RR = 0.507; 95%CI, 0.459-0.559) were identified to have positive or negative effects on HFMD respectively. Our model could successfully predict months with HFMD outbreaks versus non-outbreaks in provinces of China from Jan 2009 to Dec 2018.

CONCLUSIONS

Our study highlights the importance of refined spatial and temporal data, as well as environmental and socioeconomic information, on HFMD transmission dynamics. The spatiotemporal analysis framework may provide insights into adjusting regional interventions to local conditions and temporal variations in broader natural and social sciences.

摘要

背景

了解多源影响因素对手足口病(HFMD)流行的地理空间影响对于制定针对区域特定需求的疾病控制政策具有重要意义,但相关知识非常有限。我们旨在确定并进一步量化环境和社会经济因素对 HFMD 动态的时空异质影响。

方法

我们收集了 2009 年至 2018 年期间中国省级 HFMD 发病率及相关环境和社会经济数据。使用分层贝叶斯模型来研究区域 HFMD 与各种协变量之间的时空关系:环境协变量的线性和非线性效应,以及社会经济协变量的线性效应。

结果

HFMD 病例的时空分布高度不均匀,洛伦兹曲线和相应的基尼指数表明了这一点。峰值时间(R2 = 0.65,P = 0.009)、年振幅(R2 = 0.94,P<0.001)和半年周期性贡献(R2 = 0.88,P<0.001)在中国中部地区呈现出明显的纬度梯度。HFMD 最可能的聚类区域位于 2013 年 4 月至 2017 年 10 月期间的华南地区(广东、广西、湖南、海南)。贝叶斯模型取得了最佳的预测性能(R2 = 0.87,P<0.001)。我们发现月平均温度、相对湿度、归一化差异植被指数与 HFMD 传播之间存在显著的非线性关系。此外,人口密度(RR = 1.261;95%CI,1.169-1.353)、出生率(RR = 1.058;95%CI,1.025-1.090)、人均实际 GDP(RR = 1.163;95%CI,1.033-1.310)和学校假期(RR = 0.507;95%CI,0.459-0.559)分别对 HFMD 具有正或负效应。我们的模型可以成功预测 2009 年 1 月至 2018 年 12 月期间中国各省的 HFMD 爆发月份和非爆发月份。

结论

本研究强调了精细时空数据以及环境和社会经济信息对 HFMD 传播动态的重要性。时空分析框架可以为调整区域干预措施以适应当地情况和更广泛的自然和社会科学中的时间变化提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8692/10198510/0efcccfa513c/pntd.0011286.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验