Suppr超能文献

认知负荷下的减负:人类愿意将注意力要求高的任务的部分内容交由算法来完成。

Offloading under cognitive load: Humans are willing to offload parts of an attentionally demanding task to an algorithm.

机构信息

Institute of Educational Research, Ruhr University Bochum, Bochum, Germany.

Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

PLoS One. 2023 May 19;18(5):e0286102. doi: 10.1371/journal.pone.0286102. eCollection 2023.

Abstract

In the near future, humans will increasingly be required to offload tasks to artificial systems to facilitate daily as well as professional activities. Yet, research has shown that humans are often averse to offloading tasks to algorithms (so-called "algorithmic aversion"). In the present study, we asked whether this aversion is also present when humans act under high cognitive load. Participants performed an attentionally demanding task (a multiple object tracking (MOT) task), which required them to track a subset of moving targets among distractors on a computer screen. Participants first performed the MOT task alone (Solo condition) and were then given the option to offload an unlimited number of targets to a computer partner (Joint condition). We found that participants significantly offloaded some (but not all) targets to the computer partner, thereby improving their individual tracking accuracy (Experiment 1). A similar tendency for offloading was observed when participants were informed beforehand that the computer partner's tracking accuracy was flawless (Experiment 2). The present findings show that humans are willing to (partially) offload task demands to an algorithm to reduce their own cognitive load. We suggest that the cognitive load of a task is an important factor to consider when evaluating human tendencies for offloading cognition onto artificial systems.

摘要

在不久的将来,人类将越来越需要将任务卸载到人工系统中,以方便日常和专业活动。然而,研究表明,人类往往不喜欢将任务卸载到算法中(即所谓的“算法厌恶”)。在本研究中,我们想知道当人类在高认知负荷下行动时,这种厌恶是否也存在。参与者执行一项需要注意力的任务(多目标跟踪(MOT)任务),该任务要求他们在计算机屏幕上的干扰项中跟踪移动目标的子集。参与者首先单独执行 MOT 任务(单独条件),然后可以选择将无限数量的目标卸载到计算机伙伴(联合条件)。我们发现,参与者确实将一些(但不是全部)目标卸载到计算机伙伴,从而提高了他们的个人跟踪准确性(实验 1)。当参与者事先被告知计算机伙伴的跟踪准确性是完美的时,也观察到了类似的卸载趋势(实验 2)。本研究结果表明,人类愿意(部分)将任务需求卸载到算法中,以减轻自己的认知负荷。我们认为,当评估人类将认知卸载到人工系统的倾向时,任务的认知负荷是一个重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cdf/10198496/dd3b3ec54364/pone.0286102.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验