University of Illinois at Urbana-Champaign, Champaign, IL.
OSF HealthCare System, Peoria, IL.
JCO Clin Cancer Inform. 2023 May;7:e2200170. doi: 10.1200/CCI.22.00170.
Cancer patient navigators (CPNs) can decrease the time from diagnosis to treatment, but workloads vary widely, which may lead to burnout and less optimal navigation. Current practice for patient distribution among CPNs at our institution approximates random distribution. A literature search did not uncover previous reports of an automated algorithm to distribute patients to CPNs. We sought to develop an automated algorithm to fairly distribute new patients among CPNs specializing in the same cancer type(s) and assess its performance through simulation on a retrospective data set.
Using a 3-year data set, a proxy for CPN work was identified and multiple models were developed to predict the upcoming week's workload for each patient. An XGBoost-based predictor was retained on the basis of its superior performance. A distribution model was developed to fairly distribute new patients among CPNs within a specialty on the basis of predicted work needed. The predicted work included the week's predicted workload from a CPN's existing patients plus that of newly distributed patients to the CPN. Resulting workload unfairness was compared between predictor-informed and random distribution.
Predictor-informed distribution significantly outperformed random distribution for equalizing weekly workloads across CPNs within a specialty.
This derivation work demonstrates the feasibility of an automated model to distribute new patients more fairly than random assignment (with unfairness assessed using a workload proxy). Improved workload management may help reduce CPN burnout and improve navigation assistance for patients with cancer.
癌症患者导航员 (CPN) 可以缩短从诊断到治疗的时间,但工作量差异很大,这可能导致倦怠和导航效果不佳。目前,我们机构的患者在 CPN 之间的分配方式接近随机分配。文献检索没有发现以前关于为 CPN 分配患者的自动算法的报告。我们试图开发一种自动算法,以便公平地将新患者分配给专门从事相同癌症类型的 CPN,并通过对回顾性数据集进行模拟来评估其性能。
使用 3 年的数据集,确定了 CPN 工作的代理,并开发了多个模型来预测每个患者即将到来的一周的工作量。基于其卓越的性能,保留了基于 XGBoost 的预测器。根据预测的工作需求,开发了一种在专业内公平分配新患者的分配模型。预测的工作包括 CPN 现有患者的一周预测工作量加上分配给 CPN 的新患者的工作量。在预测器知情和随机分配之间比较了由此产生的工作量不公平性。
在专业内,预测器知情分配在平衡 CPN 每周工作量方面明显优于随机分配。
这项推导工作证明了一种自动模型分配新患者的可行性,比随机分配更公平(使用工作量代理评估不公平性)。改善工作量管理可能有助于减少 CPN 倦怠并为癌症患者提供更好的导航帮助。